#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // Verified by: https://atcoder.jp/contests/joisc2021/submissions/25693167 pub trait Action { type T: Clone + Copy; // data type U: Clone + Copy + PartialEq + Eq; // action fn update(x: Self::T, a: Self::U) -> Self::T; fn upop(fst: Self::U, snd: Self::U) -> Self::U; fn upe() -> Self::U; // identity for upop } pub struct DualSegTree { n: usize, dat: Vec, lazy: Vec, } impl DualSegTree { pub fn new(a: &[R::T]) -> Self { let n_ = a.len(); let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 DualSegTree { n: n, dat: a.to_vec(), lazy: vec![R::upe(); 2 * n - 1] } } #[inline] fn lazy_evaluate_node(&mut self, k: usize) { if self.lazy[k] == R::upe() { return; } if k >= self.n - 1 { let idx = k + 1 - self.n; self.dat[idx] = R::update(self.dat[idx], self.lazy[k]); } if k < self.n - 1 { self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]); self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]); } self.lazy[k] = R::upe(); // identity for upop } fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, l: usize, r: usize) { self.lazy_evaluate_node(k); // [a,b) and [l,r) intersects? if r <= a || b <= l {return;} if a <= l && r <= b { self.lazy[k] = R::upop(self.lazy[k], v); self.lazy_evaluate_node(k); return; } self.update_sub(a, b, v, 2 * k + 1, l, (l + r) / 2); self.update_sub(a, b, v, 2 * k + 2, (l + r) / 2, r); } /* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */ #[inline] pub fn update(&mut self, a: usize, b: usize, v: R::U) { let n = self.n; self.update_sub(a, b, v, 0, 0, n); } /* l,r are for simplicity */ fn update_at_sub(&mut self, a: usize, k: usize, l: usize, r: usize) { self.lazy_evaluate_node(k); // [a,a+1) and [l,r) intersect? if r <= a || a + 1 <= l { return; } if a <= l && r <= a + 1 { return; } self.update_at_sub(a, 2 * k + 1, l, (l + r) / 2); self.update_at_sub(a, 2 * k + 2, (l + r) / 2, r); } /* [a, b) (note: half-inclusive) */ #[inline] pub fn query(&mut self, a: usize) -> R::T { let n = self.n; self.update_at_sub(a, 0, 0, n); self.dat[a] } } enum Chmax {} impl Action for Chmax { type T = i64; // data type U = i64; // action, a |-> x |-> max(x, a) fn update(x: Self::T, a: Self::U) -> Self::T { max(x, a) } fn upop(fst: Self::U, snd: Self::U) -> Self::U { std::cmp::max(fst, snd) } fn upe() -> Self::U { // identity for upop -1 << 50 } } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) */ struct SegTree { n: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); } impl Change for T { fn chmax(&mut self, x: T) { if *self < x { *self = x; } } fn chmin(&mut self, x: T) { if *self > x { *self = x; } } } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} #[allow(unused)] macro_rules! putvec { ($v:expr) => { for i in 0..$v.len() { puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "}); } } } input! { n: usize, q: usize, lrb: [(usize1, usize, i64); q], } let mut dst = DualSegTree::::new(&vec![1; n]); for &(l, r, b) in &lrb { dst.update(l, r, b); } let mut st = SegTree::new(n, min, 1 << 60); let mut v = vec![0; n]; for i in 0..n { let a = dst.query(i); v[i] = a; st.update(i, dst.query(i)); } for &(l, r, b) in &lrb { if st.query(l, r) != b { puts!("-1\n"); return; } } putvec!(v); }