#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct MinimumCostSTFlow { struct Edge { int dst, rev; T cap; U cost; Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {} }; const U uinf; std::vector> graph; MinimumCostSTFlow(int n, const U uinf = std::numeric_limits::max()) : n(n), uinf(uinf), graph(n), prev_v(n, -1), prev_e(n, -1), dist(n), potential(n, 0) {} void add_edge(int src, int dst, T cap, U cost) { has_negative_edge |= cost < 0; graph[src].emplace_back(dst, cap, cost, graph[dst].size()); graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1); } U solve(int s, int t, T flow) { U res = 0; while (flow > 0) { if (has_negative_edge) { bellman_ford(s); has_negative_edge = false; } else { dijkstra(s); } if (dist[t] == uinf) return uinf; res += calc(s, t, flow); } return res; } U solve(int s, int t) { U res = 0; T f = tinf; bool init = false; while (true) { if (init) { dijkstra(s); } else { bellman_ford(s); init = true; } if (potential[t] >= 0 || dist[t] == uinf) return res; res += calc(s, t, f); } } std::pair minimum_cost_maximum_flow(int s, int t, T flow) { T f = flow; U cost = 0; while (flow > 0) { if (has_negative_edge) { bellman_ford(s); has_negative_edge = false; } else { dijkstra(s); } if (dist[t] == uinf) return {f - flow, cost}; cost += calc(s, t, flow); } return {f, cost}; } U abc214_h(int s, int t, T flow, const vector &topol) { U res = 0; while (flow > 0) { if (has_negative_edge) { std::fill(dist.begin(), dist.end(), uinf); dist[s] = 0; for (int i : topol) { if (dist[i] == uinf) continue; for (int j = 0; j < graph[i].size(); ++j) { const Edge &e = graph[i][j]; if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) { dist[e.dst] = dist[i] + e.cost; prev_v[e.dst] = i; prev_e[e.dst] = j; } } } for (int i = 0; i < n; ++i) { if (dist[i] != uinf) potential[i] += dist[i]; } has_negative_edge = false; } else { dijkstra(s); } if (dist[t] == uinf) return uinf; res += calc(s, t, flow); } return res; } private: const T tinf = std::numeric_limits::max(); int n; bool has_negative_edge = false; std::vector prev_v, prev_e; std::vector dist, potential; std::priority_queue, std::vector>, std::greater>> que; void bellman_ford(int s) { std::fill(dist.begin(), dist.end(), uinf); dist[s] = 0; bool is_updated = true; for (int step = 0; step < n; ++step) { is_updated = false; for (int i = 0; i < n; ++i) { if (dist[i] == uinf) continue; for (int j = 0; j < graph[i].size(); ++j) { const Edge &e = graph[i][j]; if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) { dist[e.dst] = dist[i] + e.cost; prev_v[e.dst] = i; prev_e[e.dst] = j; is_updated = true; } } } if (!is_updated) break; } assert(!is_updated); for (int i = 0; i < n; ++i) { if (dist[i] != uinf) potential[i] += dist[i]; } } void dijkstra(int s) { std::fill(dist.begin(), dist.end(), uinf); dist[s] = 0; que.emplace(0, s); while (!que.empty()) { std::pair pr = que.top(); que.pop(); int ver = pr.second; if (dist[ver] < pr.first) continue; for (int i = 0; i < graph[ver].size(); ++i) { const Edge &e = graph[ver][i]; U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst]; if (e.cap > 0 && dist[e.dst] > nx) { dist[e.dst] = nx; prev_v[e.dst] = ver; prev_e[e.dst] = i; que.emplace(dist[e.dst], e.dst); } } } for (int i = 0; i < n; ++i) { if (dist[i] != uinf) potential[i] += dist[i]; } } U calc(int s, int t, T &flow) { T f = flow; for (int v = t; v != s; v = prev_v[v]) f = std::min(f, graph[prev_v[v]][prev_e[v]].cap); flow -= f; for (int v = t; v != s; v = prev_v[v]) { Edge &e = graph[prev_v[v]][prev_e[v]]; e.cap -= f; graph[v][e.rev].cap += f; } return potential[t] * f; } }; int main() { int n, k; cin >> n >> k; vector a(n); MinimumCostSTFlow flow(n); FOR(i, 1, n) flow.add_edge(i - 1, i, k, 0); REP(i, n) { int m; cin >> a[i] >> m; while (m--) { int b; cin >> b; --b; flow.add_edge(b, i, 1, a[b] - a[i]); } } vector order(n); iota(ALL(order), 0); cout << -flow.abc214_h(0, n - 1, k, order) << '\n'; return 0; }