#ifndef HIDDEN_IN_VISUAL_STUDIO // 無意味.折りたたむのが目的. // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // 使えるライブラリの読み込み #include #include // function #include // ifstream #include // random_device using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = 3.14159265359; const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad] const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const ll INFL = (ll)9e18; const int INF = (int)2e9; const double EPS = 1e-10; // 許容誤差に応じて調整 // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repbm(mid, set, d) for(int mid = set; mid < (1 << int(d)); mid = (mid + 1) | set) // set を含む部分集合の全探索(昇順) #define repbs(sub, set) for (int sub = set, bsub = 1; bsub > 0; bsub = sub, sub = (sub - 1) & set) // set の部分集合の全探索(降順) #define repbc(set, k, d) for (int set = (1 << k) - 1, lb, nx; set < (1 << n); lb = set & -set, nx = set + lb, set = (((set & ~nx) / lb) >> 1) | nx) // 大きさ k の部分集合の全探索 #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 入出力用の >>, << のオーバーロード template inline istream& operator>> (istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline ostream& operator<< (ostream& os, const pair& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } template inline istream& operator>> (istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline ostream& operator<< (ostream& os, const vector& v) { repe(x, v) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const map& m) { repe(p, m) os << p << " "; return os; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビットにおける 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } #define dump(x) cerr << "[DEBUG]\n" << (x) << endl; // デバッグ出力用 #define dumpel(v) cerr << "[DEBUG]\n"; repe(x, (v)) {cerr << x << endl;} #define dumpeli(v) cerr << "[DEBUG]\n"; rep(i, sz(v)) {cerr << i << ": " << v[i] << endl;} // 提出用(GCC) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #define dump(x) #define dumpel(v) #define dumpeli(v) #endif #endif // 無意味.折りたたむのが目的. //-----------------AtCoder 専用----------------- #include using namespace atcoder; using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>> (istream& is, mint& x) { ll tmp; is >> tmp; x = tmp; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector; using vvm = vector; using vvvm = vector; //---------------------------------------------- //【セグメント木】 /* * Segtree(n) : O(n) * v[0..n) = e() で初期化する. * 要素はモノイド (S, op, e) の元とする. * * Segtree(v) : O(n) * 配列 v の要素で初期化する. * * set(i, x) : O(log n) * v[i] = x とする. * * get(i) : O(1) * v[i] を返す. * * prod(l, r) : O(log n) * op( v[l..r) ) を返す.空なら e() を返す. * * max_right(l) : O(log n) * f( op( v[l..r) ) ) = true となる最大の r を返す. * f : S → bool で f(e()) = true かつ単調とする. * * min_left(r) : O(log n) * f( op( v[l..r) ) ) = true となる最小の l を返す. */ template struct Segtree { // 参考:https://algo-logic.info/segment-tree/ // 完全二分木の葉の数(必ず 2 冪) int n; int actual_n; // 実際の要素数 // 完全二分木を実現する大きさ 2 * n の配列 // 根は v[1] で,v[i] の親は v[i / 2],子は v[2 * i], v[2 * i + 1]. // 0-indexed での i 番目のデータは葉である v[i + n] に入っている. // v[0] は使用しない. vector v; // コンストラクタ(初期化なし) Segtree() : n(0), actual_n(0) {} // コンストラクタ(e() で初期化) Segtree(int n_) : actual_n(n_) { // 要素数以上となる最小の 2 冪を求め,n とする. int pow2 = 1; while (pow2 < n_) { pow2 *= 2; } n = pow2; // 完全二分木を実現する大きさ 2 * n の配列を確保する. v = vector(2 * n, e()); } // コンストラクタ(配列で初期化) Segtree(vector& v_) : Segtree(sz(v_)) { // 全ての葉にデータを設定する. rep(i, sz(v_)) { v[i + n] = v_[i]; } // 全てのノードに正しい値を設定する. repir(i, n - 1, 1) { v[i] = op(v[i * 2], v[i * 2 + 1]); } } // v[i] = x とする. void set(int i, S x) { // 実際にデータを格納すべき葉の位置へ i += n; // 葉のデータを更新 v[i] = x; // 親のデータも更新しておく while (i > 1) { i /= 2; v[i] = op(v[i * 2], v[i * 2 + 1]); } } // v[i] を返す. S get(int i) const { return v[i + n]; } // op( v[l..r) ) を返す.空なら e() を返す. S prod(int l, int r) const { return prod_rf(l, r, 1, 0, n); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 S prod_rf(int l, int r, int k, int kl, int kr) const { // 範囲外なら単位元 e() を返す. if (kr <= l || r <= kl) { return e(); } // 完全に範囲内なら葉まで降りず自身の値を返す. if (l <= kl && kr <= r) { return v[k]; } // 一部の範囲のみを含むなら子を見に行く. S vl = prod_rf(l, r, k * 2, kl, (kl + kr) / 2); S vr = prod_rf(l, r, k * 2 + 1, (kl + kr) / 2, kr); return op(vl, vr); } // f( op( v[l, r) ) ) = true となる最大の r を返す. int max_right(int l, const function& f) const { S x = e(); return max_right_rf(l, actual_n, x, 1, 0, n, f); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 int max_right_rf(int l, int r, S& x, int k, int kl, int kr, const function& f) const { // 範囲外の場合 if (kr <= l || r <= kl) { return r; } // f( op( v[kl, kr) ) ) = true の場合 if (f(op(x, v[k]))) { x = op(x, v[k]); return r; } // 自身が葉であればその位置を返す. if (k >= n) { return k - n; } // まず左の部分木を見に行き,見つかったならそれを返す. int pos = max_right_rf(l, r, x, k * 2, kl, (kl + kr) / 2, f); if (pos != r) { return pos; } // 見つからなかったなら右の部分木も見にいき,結果を返す. return max_right_rf(l, r, x, k * 2 + 1, (kl + kr) / 2, kr, f); } // f( op( v[l, r) ) ) = true となる最小の l を返す. int min_left(int r, const function& f) const { S x = e(); return min_left_rf(0, r, x, 1, 0, n, f) + 1; } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 int min_left_rf(int l, int r, S& x, int k, int kl, int kr, const function& f) const { // 範囲外の場合 if (kr <= l || r <= kl) { return l - 1; } // f( op( v[kl, kr) ) ) = true の場合 if (f(op(v[k], x))) { x = op(v[k], x); return l - 1; } // 自身が葉であればその位置を返す. if (k >= n) { return k - n; } // まず右の部分木を見に行き,見つかったならそれを返す. int pos = min_left_rf(l, r, x, k * 2 + 1, (kl + kr) / 2, kr, f); if (pos != l - 1) { return pos; } // 見つからなかったなら左の部分木も見にいき,結果を返す. return min_left_rf(l, r, x, k * 2, kl, (kl + kr) / 2, f); } // デバッグ出力用 friend ostream& operator<<(ostream& os, Segtree seg) { rep(i, seg.actual_n) { os << seg.get(i) << " "; } return os; } }; //【遅延評価セグメント木】 /* * Lazy_segtree(n) : O(n) * v[0..n) = e() で初期化する. * 要素は作用付きモノイド (S, op, e, F, mapping, composition, id) の元とする. * * Lazy_segtree(v) : O(n) * 配列 v の要素で初期化する. * * set(i, x) : O(log n) * v[i] = x とする. * * get(i) : O(log n) * v[i] を返す. * * prod(l, r) : O(log n) * op( v[l..r) ) を返す.空なら e() を返す. * * apply(i, f) : O(log n) * v[i] = f( v[i] ) とする. * * apply(l, r, f) : O(log n) * v[l..r) = f( v[l..r) ) とする. * * max_right(l) : O(log n) * g( op( v[l..r) ) ) = true となる最大の r を返す. * g : S → bool で g(e()) = true かつ単調とする. * * min_left(r) : O(log n) * g( op( v[l..r) ) ) = true となる最小の l を返す. */ template struct Lazy_segtree { // 参考:https://algo-logic.info/segment-tree/ // 完全二分木の葉の数(必ず 2 冪) int n; int actual_n; // 実際の要素数 // 完全二分木を実現する大きさ 2 * n の配列 // 根は v[1] で,v[i] の親は v[i / 2],左右の子は v[2 * i], v[2 * i + 1] である. // 0-indexed での i 番目のデータは,葉である v[i + n] に入っている. // v[0] は使用しない. vector v; // 遅延評価用の完全二分木 vector lazy; // コンストラクタ(初期化なし) Lazy_segtree() : n(0), actual_n(0) {} // コンストラクタ(最大値で初期化):O(N) Lazy_segtree(int n_) : actual_n(n_) { // 要素数以上となる最小の 2 冪を求め,n とする. int pow2 = 1; while (pow2 < n_) { pow2 *= 2; } n = pow2; // 完全二分木を実現する大きさ 2 * n の配列を確保する. v = vector(2 * n, e()); lazy = vector(2 * n, id()); } // コンストラクタ(配列で初期化) Lazy_segtree(vector& v_) : Lazy_segtree(sz(v_)) { // 全ての葉にデータを設定する. rep(i, sz(v_)) { v[i + n] = v_[i]; } // 全てのノードに正しい値を設定する. repir(i, n - 1, 1) { v[i] = op(v[i * 2], v[i * 2 + 1]); } } // 遅延させていた評価を行う.:O(1) void eval(int k) { // 遅延させていた評価がなければ何もしない. if (lazy[k] == id()) { return; } // 葉でなければ子に伝搬する. if (k < n) { lazy[k * 2] = composition(lazy[k], lazy[k * 2]); lazy[k * 2 + 1] = composition(lazy[k], lazy[k * 2 + 1]); } // 自身を評価する. v[k] = mapping(lazy[k], v[k]); lazy[k] = id(); } // v[i] = x とする. void set(int i, S x) { set_rf(i, x, 1, 0, n); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 void set_rf(int i, S x, int k, int kl, int kr) { // まず自身の評価を行っておく. eval(k); // 範囲外なら何もしない. if (kr <= i || i < kl) { return; } // 葉まで降りてきたら値を代入して帰る. if (kl == i && kr == i + 1) { v[k] = x; return; } // 左右の子を見に行く. set_rf(i, x, k * 2, kl, (kl + kr) / 2); set_rf(i, x, k * 2 + 1, (kl + kr) / 2, kr); v[k] = op(v[k * 2], v[k * 2 + 1]); } // v[i] を返す. S get(int i) { return prod(i, i + 1); } // op( v[l..r) ) を返す.空なら e() を返す. S prod(int l, int r) { return prod_rf(l, r, 1, 0, n); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 S prod_rf(int l, int r, int k, int kl, int kr) { // まず自身の評価を行っておく. eval(k); // 範囲外なら単位元 e() を返す. if (kr <= l || r <= kl) { return e(); } // 完全に範囲内なら葉まで降りず自身の値を返す. if (l <= kl && kr <= r) { return v[k]; } // 一部の範囲のみを含むなら子を見に行く. S vl = prod_rf(l, r, k * 2, kl, (kl + kr) / 2); S vr = prod_rf(l, r, k * 2 + 1, (kl + kr) / 2, kr); return op(vl, vr); } // v[i] = f( v[i] ) とする. void apply(int i, F f) { apply(i, i + 1, f); } // v[l..r) = f( v[l..r) ) とする. void apply(int l, int r, F f) { apply_rf(l, r, f, 1, 0, n); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 void apply_rf(int l, int r, F f, int k, int kl, int kr) { // まず自身の評価を行っておく. eval(k); // 範囲外なら何もしない. if (kr <= l || r <= kl) { return; } // 完全に範囲内なら自身の値を更新する. if (l <= kl && kr <= r) { lazy[k] = composition(f, lazy[k]); eval(k); return; } // 一部の範囲のみを含むなら子を見に行く. apply_rf(l, r, f, k * 2, kl, (kl + kr) / 2); apply_rf(l, r, f, k * 2 + 1, (kl + kr) / 2, kr); v[k] = op(v[k * 2], v[k * 2 + 1]); } // g( op( v[l, r) ) ) = true となる最大の r を返す. int max_right(int l, const function& g) { S x = e(); return max_right_rf(l, actual_n, x, 1, 0, n, g); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 int max_right_rf(int l, int r, S& x, int k, int kl, int kr, const function& g) { // まず自身の評価を行っておく. eval(k); // 範囲外の場合 if (kr <= l || r <= kl) { return r; } // g( op( v[kl, kr) ) ) = true の場合 if (g(op(x, v[k]))) { x = op(x, v[k]); return r; } // 自身が葉であればその位置を返す. if (k >= n) { return k - n; } // まず左の部分木を見に行き,見つかったならそれを返す. int pos = max_right_rf(l, r, x, k * 2, kl, (kl + kr) / 2, g); if (pos != r) { return pos; } // 見つからなかったなら右の部分木も見にいき,結果を返す. return max_right_rf(l, r, x, k * 2 + 1, (kl + kr) / 2, kr, g); } // g( op( v[l, r) ) ) = true となる最小の l を返す. int min_left(int r, const function& g) { S x = e(); return min_left_rf(0, r, x, 1, 0, n, g) + 1; } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 int min_left_rf(int l, int r, S& x, int k, int kl, int kr, const function& g) { // まず自身の評価を行っておく. eval(k); // 範囲外の場合 if (kr <= l || r <= kl) { return l - 1; } // g( op( v[kl, kr) ) ) = true の場合 if (g(op(v[k], x))) { x = op(v[k], x); return l - 1; } // 自身が葉であればその位置を返す. if (k >= n) { return k - n; } // まず右の部分木を見に行き,見つかったならそれを返す. int pos = min_left_rf(l, r, x, k * 2 + 1, (kl + kr) / 2, kr, g); if (pos != l - 1) { return pos; } // 見つからなかったなら左の部分木も見にいき,結果を返す. return min_left_rf(l, r, x, k * 2, kl, (kl + kr) / 2, g); } // デバッグ出力用 friend ostream& operator<<(ostream& os, Lazy_segtree seg) { rep(i, seg.actual_n) { os << seg.get(i) << " "; } return os; } }; int op9(int x, int y) { return max(x, y); } int e9() { return -INF; } int mapping9(int f, int x) { return max(f, x); } int composition9(int f, int g) { return max(f, g); } int id9() { return -INF; } using SEG = Lazy_segtree; int op10(int x, int y) { return min(x, y); } int e10() { return INF; } using SEG2 = Segtree; int main() { cout << fixed << setprecision(12); int n, q; cin >> n >> q; vi l(q), r(q), b(q); rep(i, q) { cin >> l[i] >> r[i] >> b[i]; l[i]--; r[i]--; } vi ones(n, 1); SEG seg(ones); rep(i, q) { seg.apply(l[i], r[i] + 1, b[i]); } dump(seg); vi res(n); rep(i, n) { res[i] = seg.get(i); } SEG2 seg2(res); rep(i, q) { if (seg2.prod(l[i], r[i] + 1) != b[i]) { cout << -1 << endl; return 0; } } rep(i, n) { cout << res[i]; if (i < n - 1) { cout << " "; } else { cout << endl; } } }