#define LOCAL #include using namespace std; #pragma region Macros typedef long long ll; typedef __int128_t i128; typedef unsigned int uint; typedef unsigned long long ull; #define ALL(x) (x).begin(), (x).end() template istream& operator>>(istream& is, vector& v) { for (T& x : v) is >> x; return is; } template ostream& operator<<(ostream& os, const vector& v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } template ostream& operator<<(ostream& os, const pair& p) { os << '(' << p.first << ',' << p.second << ')'; return os; } template ostream& operator<<(ostream& os, const map& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const unordered_map& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const set& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const multiset& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const unordered_set& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const deque& v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } template void print_tuple(ostream&, const T&) {} template void print_tuple(ostream& os, const T& t) { if (i) os << ','; os << get(t); print_tuple(os, t); } template ostream& operator<<(ostream& os, const tuple& t) { os << '{'; print_tuple<0, tuple, Args...>(os, t); return os << '}'; } void debug_out() { cerr << '\n'; } template void debug_out(Head&& head, Tail&&... tail) { cerr << head; if (sizeof...(Tail) > 0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) \ cerr << " "; \ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \ cerr << " "; \ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; } template T lcm(T x, T y) { return x / gcd(x, y) * y; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); } int popcount(signed t) { return __builtin_popcount(t); } int popcount(long long t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } template T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x - y + 1) / y); } template inline bool chmin(T1& a, T2 b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T1& a, T2 b) { if (a < b) { a = b; return true; } return false; } #pragma endregion /** * @brief Topological Sort * @docs docs/graph/TopologicalSort.md */ struct TopologicalSort { vector> G; vector seen, order; TopologicalSort(int n) : G(n), seen(n) {} void add_edge(int u, int v) { G[u].emplace_back(v); } void dfs(int v) { seen[v] = 1; for (int u : G[v]) { if (!seen[u]) dfs(u); } order.emplace_back(v); } vector build() { for (int i = 0; i < (int)G.size(); i++) { if (!seen[i]) dfs(i); } reverse(order.begin(), order.end()); return order; } int operator[](int i) { return order[i]; } }; /** * @brief Primal Dual * @docs docs/flow/PrimalDual.md */ template struct PrimalDual { const E inf = numeric_limits::max() / 3; struct edge { int to, rev; T cap; E cost; edge(int to, T cap, E cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; vector> G; vector> pos; vector h, dist; vector prevv, preve; PrimalDual(int n) : G(n), h(n), dist(n), prevv(n), preve(n) {} int add_edge(int from, int to, T cap, E cost) { pos.emplace_back(from, G[from].size()); G[from].emplace_back(to, cap, cost, G[to].size()); G[to].emplace_back(from, 0, -cost, G[from].size() - 1); return pos.size() - 1; } tuple get_edge(int i) { auto e = G[pos[i].first][pos[i].second]; auto re = G[e.to][e.rev]; return {pos[i].first, e.to, e.cap + re.cap, re.cap, e.cost}; } vector> edges() { vector> res; for (int i = 0; i < (int)pos.size(); i++) { res.emplace_back(get_edge(i)); } return res; } void potential_dag(int s) { for (int v = 0; v < G.size(); v++) { for (int i = 0; i < (int)G[v].size(); i++) { auto& e = G[v][i]; if (e.cap <= 0) continue; int u = e.to; h[u] = min(h[u], h[v] + e.cost); } } } void dijkstra(int s) { struct P { E c; int v; P(E c, int v) : c(c), v(v) {} bool operator<(const P& rhs) const { return c > rhs.c; } }; priority_queue

pq; fill(dist.begin(), dist.end(), inf); dist[s] = 0; pq.emplace(dist[s], s); while (!pq.empty()) { auto p = pq.top(); pq.pop(); int v = p.v; if (dist[v] < p.c) continue; for (int i = 0; i < (int)G[v].size(); i++) { auto& e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; pq.emplace(dist[e.to], e.to); } } } } vector> slope(int s, int t, T lim) { T f = 0; E c = 0, pre = -1; vector> res; res.emplace_back(f, c); potential_dag(s); while (f < lim) { dijkstra(s); if (dist[t] == inf) break; for (int v = 0; v < (int)G.size(); v++) h[v] += dist[v]; T d = lim - f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } for (int v = t; v != s; v = prevv[v]) { auto& e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } f += d; c += h[t] * d; if (pre == h[t]) res.pop_back(); res.emplace_back(f, c); pre = c; } return res; } E min_cost_flow(int s, int t, T f) { auto res = slope(s, t, f).back(); return res.first == f ? res.second : -1; } pair min_cost_max_flow(int s, int t) { return slope(s, t, numeric_limits::max()).back(); } vector> min_cost_slope(int s, int t) { return slope(s, t, numeric_limits::max()); } }; const int INF = 1e9; const long long IINF = 1e18; const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const char dir[4] = {'D', 'R', 'U', 'L'}; const long long MOD = 1000000007; // const long long MOD = 998244353; int main() { cin.tie(0); ios::sync_with_stdio(false); int N, K; cin >> N >> K; vector A(N), M(N); vector> B(N); for (int i = 0; i < N; i++) { cin >> A[i] >> M[i]; for (int j = 0; j < M[i]; j++) { int b; cin >> b; B[i].emplace_back(--b); } } TopologicalSort TS(2 * N + 1); int s = N, t = 2 * N; for (int i = 0; i < N; i++) { TS.add_edge(N + i, i); TS.add_edge(i, N + i + 1); TS.add_edge(N + i, N + i + 1); for (int& j : B[i]) TS.add_edge(j, i); } TS.build(); vector ord(2 * N + 1); for (int i = 0; i <= 2 * N; i++) ord[TS[i]] = i; PrimalDual PD(2 * N + 1); for (int i = 0; i < N; i++) { PD.add_edge(ord[N + i], ord[i], K, A[i]); PD.add_edge(ord[i], ord[N + i + 1], K, -A[i]); PD.add_edge(ord[N + i], ord[N + i + 1], K, 0); for (int& j : B[i]) PD.add_edge(ord[j], ord[i], 1, 0); } ll ans = -PD.min_cost_flow(ord[s], ord[t], K); cout << ans << '\n'; return 0; }