#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include // #include // #include // #include // using namespace __gnu_pbds; // #include // namespace multiprecisioninteger = boost::multiprecision; // using cint=multiprecisioninteger::cpp_int; using namespace std; using ll=long long; using datas=pair; using ddatas=pair; using tdata=pair; using vec=vector; using mat=vector; using pvec=vector; using pmat=vector; // using llset=tree,rb_tree_tag,tree_order_statistics_node_update>; #define For(i,a,b) for(i=a;i<(ll)b;++i) #define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i) #define rep(i,N) For(i,0,N) #define rep1(i,N) For(i,1,N) #define brep(i,N) bFor(i,N,0) #define brep1(i,N) bFor(i,N,1) #define all(v) (v).begin(),(v).end() #define allr(v) (v).rbegin(),(v).rend() #define vsort(v) sort(all(v)) #define vrsort(v) sort(allr(v)) #define uniq(v) vsort(v),(v).erase(unique(all(v)),(v).end()) #define endl "\n" #define popcount __builtin_popcountll #define eb emplace_back #define print(x) cout< ostream& operator<<(ostream& os,const pair& p){return os<<"("< ostream& operator<<(ostream& os,const vector& v){ os<<"{";bool f=false; for(auto& x:v){if(f)os<<",";os< ostream& operator<<(ostream& os,const set& v){ os<<"{";bool f=false; for(auto& x:v){if(f)os<<",";os< ostream& operator<<(ostream& os,const multiset& v){ os<<"{";bool f=false; for(auto& x:v){if(f)os<<",";os< ostream& operator<<(ostream& os,const map& v){ os<<"{";bool f=false; for(auto& x:v){if(f)os<<",";os< inline bool chmax(T& a,const T b){bool x=a inline bool chmin(T& a,const T b){bool x=a>b;if(x)a=b;return x;} #ifdef DEBUG void debugg(){cout<void debugg(const T& x,const Args&... args){cout<<" "< struct PrimalDual { const cost_t INF; struct edge { int to; flow_t cap; cost_t cost; int rev; bool isrev; }; vector< vector< edge > > graph; vector< cost_t > potential, min_cost; vector< int > prevv, preve; PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {} void add_edge(int from, int to, flow_t cap, cost_t cost) { graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false}); graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true}); } cost_t min_cost_flow(int s, int t, flow_t f) { int V = (int) graph.size(); cost_t ret = 0; using Pi = pair< cost_t, int >; priority_queue< Pi, vector< Pi >, greater< Pi > > que; potential.assign(V, 0); preve.assign(V, -1); prevv.assign(V, -1); while(f > 0) { min_cost.assign(V, INF); que.emplace(0, s); min_cost[s] = 0; while(!que.empty()) { Pi p = que.top(); que.pop(); if(min_cost[p.second] < p.first) continue; for(int i = 0; i < graph[p.second].size(); i++) { edge &e = graph[p.second][i]; cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to]; if(e.cap > 0 && min_cost[e.to] > nextCost) { min_cost[e.to] = nextCost; prevv[e.to] = p.second, preve[e.to] = i; que.emplace(min_cost[e.to], e.to); } } } if(min_cost[t] == INF) return -1; for(int v = 0; v < V; v++) potential[v] += min_cost[v]; flow_t addflow = f; for(int v = t; v != s; v = prevv[v]) { addflow = min(addflow, graph[prevv[v]][preve[v]].cap); } f -= addflow; ret += addflow * potential[t]; for(int v = t; v != s; v = prevv[v]) { edge &e = graph[prevv[v]][preve[v]]; e.cap -= addflow; graph[v][e.rev].cap += addflow; } } return ret; } // void output() { // for(int i = 0; i < graph.size(); i++) { // for(auto &e : graph[i]) { // if(e.isrev) continue; // auto &rev_e = graph[e.to][e.rev]; // cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl; // } // } // } }; int main(){ startupcpp(); int N,K; cin>>N>>K; PrimalDual fl(N); vector a(N); for(int i=0;i>a[i]>>M; while(M--){ int x; cin>>x; if(a[--x]>=a[i])continue; fl.add_edge(x,i,1,a[x]-a[i]); } if(i)fl.add_edge(i-1,i,K,0); } auto ans=fl.min_cost_flow(0,N-1,K); print(-ans); }