#line 1 "other-workspace\\y.cc" #if defined(ONLINE_JUDGE) // && 0 #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,mmx,avx,avx2") #endif // #undef _GLIBCXX_DEBUG #include #line 2 "Library\\lib\\alias" /** * @file alias * @brief Alias */ #line 10 "Library\\lib\\alias" // #include "bit" #line 2 "Library\\lib\\limits" #line 4 "Library\\lib\\limits" namespace workspace { template struct numeric_limits : std::numeric_limits<_Tp> {}; #ifdef __SIZEOF_INT128__ template <> struct numeric_limits<__uint128_t> { constexpr static __uint128_t max() { return ~__uint128_t(0); } constexpr static __uint128_t min() { return 0; } }; template <> struct numeric_limits<__int128_t> { constexpr static __int128_t max() { return numeric_limits<__uint128_t>::max() >> 1; } constexpr static __int128_t min() { return -max() - 1; } }; #endif } // namespace workspace #line 13 "Library\\lib\\alias" namespace workspace { constexpr static char eol = '\n'; using namespace std; using i32 = int_least32_t; using u32 = uint_least32_t; using i64 = int_least64_t; using u64 = uint_least64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; using u128 = __uint128_t; #else #warning 128-bit integer is not available. #endif template () < std::declval())> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type min(const _T1 &__x, const _T2 &__y) noexcept { return __y < __x ? __y : __x; } template ()( std::declval(), std::declval()))> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type min(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept { return __comp(__y, __x) ? __y : __x; } template () < std::declval())> constexpr _Tp min(std::initializer_list<_Tp> __x) noexcept { return *std::min_element(__x.begin(), __x.end()); } template ()( std::declval(), std::declval()))> constexpr _Tp min(std::initializer_list<_Tp> __x, _Compare __comp) noexcept { return *std::min_element(__x.begin(), __x.end(), __comp); } template () < std::declval())> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type max(const _T1 &__x, const _T2 &__y) noexcept { return __x < __y ? __y : __x; } template ()( std::declval(), std::declval()))> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type max(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept { return __comp(__x, __y) ? __y : __x; } template () < std::declval())> constexpr _Tp max(std::initializer_list<_Tp> __x) noexcept { return *std::max_element(__x.begin(), __x.end()); } template ()( std::declval(), std::declval()))> constexpr _Tp max(std::initializer_list<_Tp> __x, _Compare __comp) noexcept { return *std::max_element(__x.begin(), __x.end(), __comp); } #ifdef _GLIBCXX_BIT template constexpr _Tp __bsf(_Tp __x) noexcept { return std::__countr_zero(__x); } template constexpr _Tp __bsr(_Tp __x) noexcept { return std::__bit_width(__x) - 1; } #endif } // namespace workspace #line 10 "other-workspace\\y.cc" // #include "lib/cxx20" #line 2 "Library\\src\\sys\\call_once.hpp" /** * @file call_once.hpp * @brief Call Once */ #line 9 "Library\\src\\sys\\call_once.hpp" namespace workspace { /** * @brief Call once. */ template void call_once(_F &&__f) { static std::unordered_set __called; if (__called.count(std::addressof(__f))) return; __called.emplace(std::addressof(__f)); __f(); } } // namespace workspace #line 2 "Library\\src\\sys\\clock.hpp" /** * @file clock.hpp * @brief Clock */ #line 9 "Library\\src\\sys\\clock.hpp" namespace workspace { using namespace std::chrono; namespace internal { // The start time of the program. const auto start_time{system_clock::now()}; } // namespace internal /** * @return Elapsed time of the program. */ decltype(auto) elapsed() noexcept { const auto end_time{system_clock::now()}; return duration_cast(end_time - internal::start_time).count(); } } // namespace workspace #line 2 "Library\\src\\sys\\ejection.hpp" /** * @file ejection.hpp * @brief Ejection */ #line 9 "Library\\src\\sys\\ejection.hpp" namespace workspace { namespace internal { struct ejection { bool exit = 0; }; } // namespace internal /** * @brief eject from a try block, throw nullptr * @param arg output */ template void eject(Tp const &arg) { std::cout << arg << "\n"; throw internal::ejection{}; } void exit() { throw internal::ejection{true}; } } // namespace workspace #line 2 "Library\\src\\sys\\iteration.hpp" /** * @file iteration.hpp * @brief Case Iteration */ #line 9 "Library\\src\\sys\\iteration.hpp" #line 11 "Library\\src\\sys\\iteration.hpp" namespace workspace { void main(); struct { // 1-indexed unsigned current{0}; unsigned total{1}; void read() { (std::cin >> total).ignore(); } int iterate() { static bool once = false; assert(!once); once = true; while (current++ < total) { try { main(); } catch (internal::ejection const& status) { if (status.exit) break; } } return 0; } } case_info; } // namespace workspace #line 1 "Library\\lib\\utils" // #include "src/utils/cached.hpp" // #include "src/utils/cat.hpp" #line 2 "Library\\src\\utils\\chval.hpp" /** * @file chval.hpp * @brief Change Less/Greater */ #line 9 "Library\\src\\utils\\chval.hpp" namespace workspace { /** * @brief Substitute __y for __x if __y < __x. * @param __x Reference * @param __y Comparison target * @return Whether or not __x is updated. */ template () < std::declval<_T1 &>())> typename std::enable_if::value, bool>::type chle( _T1 &__x, _T2 &&__y) noexcept { return __y < __x ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __x < __y. * @param __x Reference * @param __y Comparison target * @return Whether or not __x is updated. */ template () < std::declval<_T2>())> typename std::enable_if::value, bool>::type chgr( _T1 &__x, _T2 &&__y) noexcept { return __x < __y ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __comp(__y, __x) is true. * @param __x Reference * @param __y Comparison target * @param __comp Compare function object * @return Whether or not __x is updated. */ template ()(std::declval<_T2>(), std::declval<_T1 &>()))> typename std::enable_if::value, bool>::type chle( _T1 &__x, _T2 &&__y, _Compare __comp) noexcept { return __comp(__y, __x) ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __comp(__x, __y) is true. * @param __x Reference * @param __y Comparison target * @param __comp Compare function object * @return Whether or not __x is updated. */ template ()(std::declval<_T1 &>(), std::declval<_T2>()))> typename std::enable_if::value, bool>::type chgr( _T1 &__x, _T2 &&__y, _Compare __comp) noexcept { return __comp(__x, __y) ? __x = std::forward<_T2>(__y), true : false; } } // namespace workspace #line 2 "Library\\src\\utils\\fixed_point.hpp" /** * @file fixed_point.hpp * @brief Fixed Point Combinator */ #line 9 "Library\\src\\utils\\fixed_point.hpp" namespace workspace { /** * @brief Fixed Point Combinator. */ template class fixed_point { struct _wrapper { _F &__ref; template decltype(auto) operator()(_Args &&...__args) noexcept( noexcept(__ref(*this, std::forward<_Args>(__args)...))) { return __ref(*this, std::forward<_Args>(__args)...); } }; _F __fn; public: // Construct a new fixed-point object. fixed_point(_F __x) noexcept : __fn(__x) {} // Function call. template decltype(auto) operator()(_Args &&...__args) noexcept(noexcept(_wrapper{ __fn}(std::forward<_Args>(__args)...))) { return _wrapper{__fn}(std::forward<_Args>(__args)...); } }; } // namespace workspace #line 5 "Library\\lib\\utils" // #include "src/utils/hash.hpp" // #include "src/utils/io/istream.hpp" // #include "src/utils/io/ostream.hpp" // #include "src/utils/io/read.hpp" // #include "src/utils/grid/motion.hpp" #line 2 "Library\\src\\utils\\io\\setup.hpp" /** * @file setup.hpp * @brief I/O Setup */ #line 10 "Library\\src\\utils\\io\\setup.hpp" namespace workspace { /** * @brief Setup I/O. * @param __n Standard output precision */ void io_setup(int __n) { std::cin.tie(0)->sync_with_stdio(0); std::cout << std::fixed << std::setprecision(__n); #ifdef _buffer_check atexit([] { char bufc; if (std::cin >> bufc) std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n"; }); #endif } } // namespace workspace #line 11 "Library\\lib\\utils" // #include "src/utils/iterator/category.hpp" // #include "src/utils/iterator/reverse.hpp" // #include "src/utils/make_vector.hpp" #line 2 "Library\\src\\utils\\py-like\\enumerate.hpp" /** * @file enumerate.hpp * @brief Enumerate */ #line 2 "Library\\src\\utils\\py-like\\range.hpp" /** * @file range.hpp * @brief Range */ #line 2 "Library\\src\\utils\\py-like\\reversed.hpp" /** * @file reversed.hpp * @brief Reversed */ #line 9 "Library\\src\\utils\\py-like\\reversed.hpp" #line 2 "Library\\lib\\cxx17" #line 2 "Library\\lib\\cxx14" #ifndef _CXX14_CONSTEXPR #if __cplusplus >= 201402L #define _CXX14_CONSTEXPR constexpr #else #define _CXX14_CONSTEXPR #endif #endif #line 4 "Library\\lib\\cxx17" #ifndef _CXX17_CONSTEXPR #if __cplusplus >= 201703L #define _CXX17_CONSTEXPR constexpr #else #define _CXX17_CONSTEXPR #endif #endif #ifndef _CXX17_STATIC_ASSERT #if __cplusplus >= 201703L #define _CXX17_STATIC_ASSERT static_assert #else #define _CXX17_STATIC_ASSERT assert #endif #endif #line 22 "Library\\lib\\cxx17" #if __cplusplus < 201703L namespace std { /** * @brief Return the size of a container. * @param __cont Container. */ template constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size())) -> decltype(__cont.size()) { return __cont.size(); } /** * @brief Return the size of an array. */ template constexpr size_t size(const _Tp (&)[_Nm]) noexcept { return _Nm; } /** * @brief Return whether a container is empty. * @param __cont Container. */ template [[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept( noexcept(__cont.empty())) -> decltype(__cont.empty()) { return __cont.empty(); } /** * @brief Return whether an array is empty (always false). */ template [[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept { return false; } /** * @brief Return whether an initializer_list is empty. * @param __il Initializer list. */ template [[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept { return __il.size() == 0; } struct monostate {}; } // namespace std #else #include #endif #line 11 "Library\\src\\utils\\py-like\\reversed.hpp" namespace workspace { // Reversed container. template class reversed { _Container __c; public: template constexpr reversed(_Tp &&__x) noexcept : __c(std::forward<_Container>(__x)) {} template constexpr reversed(std::initializer_list<_Tp> __x) noexcept : __c(__x) {} constexpr decltype(auto) begin() noexcept { return std::rbegin(__c); } constexpr decltype(auto) begin() const noexcept { return std::rbegin(__c); } constexpr decltype(auto) end() noexcept { return std::rend(__c); } constexpr decltype(auto) end() const noexcept { return std::rend(__c); } constexpr bool empty() const noexcept { return std::empty(__c); } constexpr decltype(auto) size() const noexcept { return std::size(__c); } using iterator = decltype(std::rbegin(__c)); using const_iterator = decltype(std::crbegin(__c)); using size_type = decltype(std::size(__c)); using difference_type = typename std::iterator_traits::difference_type; using value_type = typename std::iterator_traits::value_type; using reference = typename std::iterator_traits::reference; using const_reference = typename std::iterator_traits::reference; }; #if __cpp_deduction_guides >= 201606L template reversed(_Tp &&) -> reversed<_Tp>; template reversed(std::initializer_list<_Tp>) -> reversed>; #endif } // namespace workspace #line 9 "Library\\src\\utils\\py-like\\range.hpp" namespace workspace { template class range { _Index __first, __last; public: class iterator { _Index __i; public: using difference_type = std::ptrdiff_t; using value_type = _Index; using pointer = void; using reference = value_type; using iterator_category = std::random_access_iterator_tag; constexpr iterator() = default; constexpr iterator(const _Index &__x) noexcept : __i(__x) {} constexpr bool operator==(const iterator &__x) const noexcept { return __i == __x.__i; } constexpr bool operator!=(const iterator &__x) const noexcept { return __i != __x.__i; } constexpr bool operator<(const iterator &__x) const noexcept { return __i < __x.__i; } constexpr bool operator<=(const iterator &__x) const noexcept { return __i <= __x.__i; } constexpr bool operator>(const iterator &__x) const noexcept { return __i > __x.__i; } constexpr bool operator>=(const iterator &__x) const noexcept { return __i >= __x.__i; } constexpr iterator &operator++() noexcept { ++__i; return *this; } constexpr iterator operator++(int) noexcept { auto __tmp = *this; ++__i; return __tmp; } constexpr iterator &operator--() noexcept { --__i; return *this; } constexpr iterator operator--(int) noexcept { auto __tmp = *this; --__i; return __tmp; } constexpr difference_type operator-(const iterator &__x) const noexcept { return __i - __x.__i; } constexpr iterator &operator+=(difference_type __x) noexcept { __i += __x; return *this; } constexpr iterator operator+(difference_type __x) const noexcept { return iterator(*this) += __x; } constexpr iterator &operator-=(difference_type __x) noexcept { __i -= __x; return *this; } constexpr iterator operator-(difference_type __x) const noexcept { return iterator(*this) -= __x; } constexpr reference operator*() const noexcept { return __i; } }; using value_type = _Index; using reference = value_type; using difference_type = std::ptrdiff_t; using size_type = std::size_t; using const_iterator = iterator; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = reverse_iterator; template constexpr range(const _Tp1 &__first, const _Tp2 &__last) noexcept : __first(__first), __last(__last) {} template constexpr range(const _Tp &__last) noexcept : __first(), __last(__last) {} constexpr iterator begin() const noexcept { return {__first}; } constexpr const_iterator cbegin() const noexcept { return begin(); } constexpr iterator end() const noexcept { return {__last}; } constexpr const_iterator cend() const noexcept { return end(); } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator{end()}; } constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); } constexpr reverse_iterator rend() const noexcept { return reverse_iterator{begin()}; } constexpr const_reverse_iterator crend() const noexcept { return rend(); } constexpr size_type size() const noexcept { return std::distance(__first, __last); } }; #if __cpp_deduction_guides >= 201606L template range(const _Tp1 &, const _Tp2 &) -> range())>>; template range(const _Tp &) -> range())>>; #endif template constexpr decltype(auto) rrange(_Args &&...__args) noexcept { return reversed(range(std::forward<_Args>(__args)...)); } } // namespace workspace #line 2 "Library\\src\\utils\\py-like\\zip.hpp" /** * @file zip.hpp * @brief Zip */ #line 11 "Library\\src\\utils\\py-like\\zip.hpp" #line 2 "Library\\src\\utils\\iterator\\category.hpp" /* * @file category.hpp * @brief Iterator Category */ #line 10 "Library\\src\\utils\\iterator\\category.hpp" namespace workspace { /* * @tparam Tuple Tuple of iterator types */ template ::value - 1> struct common_iterator_category { using type = typename std::common_type< typename common_iterator_category::type, typename std::iterator_traits::type>::iterator_category>::type; }; template struct common_iterator_category { using type = typename std::iterator_traits< typename std::tuple_element<0, Tuple>::type>::iterator_category; }; } // namespace workspace #line 2 "Library\\src\\utils\\iterator\\reverse.hpp" /* * @file reverse_iterator.hpp * @brief Reverse Iterator */ #if __cplusplus >= 201703L #include #include namespace workspace { /* * @class reverse_iterator * @brief Wrapper class for `std::reverse_iterator`. * @see http://gcc.gnu.org/PR51823 */ template class reverse_iterator : public std::reverse_iterator { using base_std = std::reverse_iterator; std::optional deref; public: using base_std::reverse_iterator; constexpr typename base_std::reference operator*() noexcept { if (!deref) { Iterator tmp = base_std::current; deref = *--tmp; } return deref.value(); } constexpr reverse_iterator &operator++() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator &operator--() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator++(int) noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator--(int) noexcept { base_std::operator++(); deref.reset(); return *this; } }; } // namespace workspace #endif #line 15 "Library\\src\\utils\\py-like\\zip.hpp" namespace workspace { template class zipped : protected _Tuple { public: zipped(const _Tuple &__x) : _Tuple(__x) {} template constexpr decltype(auto) get() const &noexcept { return *std::get<_Nm>(*this); } template constexpr decltype(auto) get() &&noexcept { auto __tmp = *std::get<_Nm>(*this); return __tmp; } }; template class zip { std::tuple<_Containers...> __c; template constexpr decltype(auto) begin_cat() const noexcept { if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) { return std::tuple_cat(std::tuple(std::begin(std::get<_Nm>(__c))), begin_cat<_Nm + 1>()); } else return std::tuple<>(); } template constexpr decltype(auto) end_cat() const noexcept { if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) { return std::tuple_cat(std::tuple(std::end(std::get<_Nm>(__c))), end_cat<_Nm + 1>()); } else return std::tuple<>(); } using _Iterator_tuple = std::tuple()))...>; public: using size_type = std::size_t; class iterator : public zipped<_Iterator_tuple> { using _Base = zipped<_Iterator_tuple>; public: using difference_type = std::ptrdiff_t; using value_type = _Base; using pointer = void; using reference = value_type &; using iterator_category = typename common_iterator_category<_Iterator_tuple>::type; protected: template constexpr bool equal(const iterator &__x) const noexcept { if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) { return std::get<_Nm>(*this) == std::get<_Nm>(__x) || equal<_Nm + 1>(__x); } else return false; } template constexpr void increment() noexcept { if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) ++std::get<_Nm>(*this), increment<_Nm + 1>(); } template constexpr void decrement() noexcept { if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) --std::get<_Nm>(*this), decrement<_Nm + 1>(); } template constexpr void advance(difference_type __d) noexcept { if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) std::get<_Nm>(*this) += __d, advance<_Nm + 1>(__d); } public: iterator(const _Iterator_tuple &__x) : _Base(__x) {} constexpr bool operator==(const iterator &__x) const noexcept { return equal(__x); } constexpr bool operator!=(const iterator &__x) const noexcept { return !equal(__x); } constexpr iterator &operator++() noexcept { increment(); return *this; } constexpr iterator operator++(int) noexcept { auto __tmp = *this; increment(); return __tmp; } constexpr iterator &operator--() noexcept { decrement(); return *this; } constexpr iterator operator--(int) noexcept { auto __tmp = *this; decrement(); return __tmp; } constexpr bool operator<(const iterator &__x) const noexcept { return std::get<0>(*this) < std::get<0>(__x); } constexpr bool operator<=(const iterator &__x) const noexcept { return std::get<0>(*this) <= std::get<0>(__x); } constexpr bool operator>(const iterator &__x) const noexcept { return !operator<=(__x); } constexpr bool operator>=(const iterator &__x) const noexcept { return !operator>(__x); } constexpr iterator &operator+=(difference_type __d) noexcept { advance(__d); return *this; } constexpr iterator &operator-=(difference_type __d) noexcept { advance(-__d); return *this; } constexpr iterator operator+(difference_type __d) const noexcept { return iterator{*this} += __d; } constexpr iterator operator-(difference_type __d) const noexcept { return iterator{*this} -= __d; } constexpr difference_type operator-(const iterator &__x) const noexcept { return std::get<0>(*this) - std::get<0>(__x); } constexpr reference operator*() noexcept { return {*this}; } }; using const_iterator = iterator; template constexpr zip(_Args &&...__args) noexcept : __c(std::forward<_Args>(__args)...) {} template constexpr zip(std::initializer_list<_Args>... __args) noexcept : __c(std::forward<_Args>(__args)...) {} constexpr iterator begin() const noexcept { return {begin_cat()}; } constexpr iterator end() const noexcept { return {end_cat()}; } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator{end()}; } constexpr reverse_iterator rend() const noexcept { return reverse_iterator{begin()}; } #if __cplusplus >= 201703L constexpr size_type size() const noexcept { size_type __n = -1; std::apply( [&__n](auto &&__x) { if (__n < __x.size()) __n = __x.size(); }, __c); return __n; } #endif }; #if __cpp_deduction_guides >= 201606L template zip(_Args &&...) -> zip<_Args...>; // For gcc version < 10 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80438 template zip(_Tp &&, _Args &&...) -> zip<_Tp, _Args...>; template zip(std::initializer_list<_Args>...) -> zip...>; #endif } // namespace workspace namespace std { template struct tuple_element<_Nm, workspace::zipped<_Tuple>> { using type = remove_reference_t< typename iterator_traits>::reference>; }; template struct tuple_size> : tuple_size<_Tuple> {}; } // namespace std #line 10 "Library\\src\\utils\\py-like\\enumerate.hpp" #if __cplusplus >= 201703L namespace workspace { namespace _enumerate_impl { constexpr size_t min_size() noexcept { return SIZE_MAX; } template constexpr size_t min_size(_Container const &__cont, _Args &&... __args) noexcept { return std::min(std::size(__cont), min_size(std::forward<_Args>(__args)...)); } } // namespace _enumerate_impl template constexpr decltype(auto) enumerate(_Args &&... __args) noexcept { return zip(range(_enumerate_impl::min_size(__args...)), std::forward<_Args>(__args)...); } template constexpr decltype(auto) enumerate( std::initializer_list<_Args> const &... __args) noexcept { return zip(range(_enumerate_impl::min_size(__args...)), std::vector(__args)...); } } // namespace workspace #endif #line 17 "Library\\lib\\utils" // #include "src/utils/py-like/zip.hpp" // #include "src/utils/rand/rng.hpp" // #include "src/utils/rand/shuffle.hpp" #line 2 "Library\\src\\utils\\round_div.hpp" /* * @file round_div.hpp * @brief Round Integer Division */ #line 9 "Library\\src\\utils\\round_div.hpp" #line 2 "Library\\src\\utils\\sfinae.hpp" /** * @file sfinae.hpp * @brief SFINAE */ #line 10 "Library\\src\\utils\\sfinae.hpp" #include #ifndef __INT128_DEFINED__ #ifdef __SIZEOF_INT128__ #define __INT128_DEFINED__ 1 #else #define __INT128_DEFINED__ 0 #endif #endif namespace std { #if __INT128_DEFINED__ template <> struct make_signed<__uint128_t> { using type = __int128_t; }; template <> struct make_signed<__int128_t> { using type = __int128_t; }; template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; }; template <> struct make_unsigned<__int128_t> { using type = __uint128_t; }; template <> struct is_signed<__uint128_t> : std::false_type {}; template <> struct is_signed<__int128_t> : std::true_type {}; template <> struct is_unsigned<__uint128_t> : std::true_type {}; template <> struct is_unsigned<__int128_t> : std::false_type {}; #endif } // namespace std namespace workspace { template struct variadic_front { using type = Tp; }; template struct variadic_back; template struct variadic_back { using type = Tp; }; template struct variadic_back { using type = typename variadic_back::type; }; template class trait> using enable_if_trait_type = typename std::enable_if::value>::type; /** * @brief Return type of subscripting ( @c [] ) access. */ template using subscripted_type = typename std::decay()[0])>::type; template using element_type = typename std::decay()))>::type; template struct has_begin : std::false_type {}; template struct has_begin< _Tp, std::__void_t()))>> : std::true_type { using type = decltype(std::begin(std::declval())); }; template struct has_size : std::false_type {}; template struct has_size<_Tp, std::__void_t()))>> : std::true_type {}; template struct has_resize : std::false_type {}; template struct has_resize<_Tp, std::__void_t().resize( std::declval()))>> : std::true_type {}; template struct has_mod : std::false_type {}; template struct has_mod<_Tp, std::__void_t> : std::true_type {}; template struct is_integral_ext : std::false_type {}; template struct is_integral_ext< _Tp, typename std::enable_if::value>::type> : std::true_type {}; #if __INT128_DEFINED__ template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #endif #if __cplusplus >= 201402 template constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value; #endif template struct multiplicable_uint { using type = uint_least32_t; }; template struct multiplicable_uint< _Tp, typename std::enable_if<(2 < sizeof(_Tp)) && (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> { using type = uint_least64_t; }; #if __INT128_DEFINED__ template struct multiplicable_uint<_Tp, typename std::enable_if<(4 < sizeof(_Tp))>::type> { using type = __uint128_t; }; #endif template struct multiplicable_int { using type = typename std::make_signed::type>::type; }; template struct multiplicable { using type = std::conditional_t< is_integral_ext<_Tp>::value, std::conditional_t::value, typename multiplicable_int<_Tp>::type, typename multiplicable_uint<_Tp>::type>, _Tp>; }; template struct first_arg { using type = void; }; template struct first_arg<_R(_Tp, _Args...)> { using type = _Tp; }; template struct first_arg<_R (*)(_Tp, _Args...)> { using type = _Tp; }; template struct first_arg<_R (_G::*)(_Tp, _Args...)> { using type = _Tp; }; template struct first_arg<_R (_G::*)(_Tp, _Args...) const> { using type = _Tp; }; template struct parse_compare : first_arg<_Tp> {}; template struct parse_compare<_Tp, std::__void_t> : first_arg {}; template struct get_dimension { static constexpr size_t value = 0; }; template struct get_dimension<_Container, std::enable_if_t::value>> { static constexpr size_t value = 1 + get_dimension::type>::value_type>::value; }; } // namespace workspace #line 11 "Library\\src\\utils\\round_div.hpp" namespace workspace { /* * @fn floor_div * @brief floor of fraction. * @param x the numerator * @param y the denominator * @return maximum integer z s.t. z <= x / y * @note y must be nonzero. */ template constexpr typename std::enable_if<(is_integral_ext::value && is_integral_ext::value), typename std::common_type::type>::type floor_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? (x - y + 1) / y : x / y; } /* * @fn ceil_div * @brief ceil of fraction. * @param x the numerator * @param y the denominator * @return minimum integer z s.t. z >= x / y * @note y must be nonzero. */ template constexpr typename std::enable_if<(is_integral_ext::value && is_integral_ext::value), typename std::common_type::type>::type ceil_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? x / y : (x + y - 1) / y; } } // namespace workspace #line 21 "Library\\lib\\utils" // #include "src\utils\rand\tree.hpp" // #include "src\utils\reference_list.hpp" #line 2 "Library\\src\\utils\\io\\input.hpp" /** * @file input.hpp * @brief Input */ #line 2 "Library\\src\\utils\\io\\istream.hpp" /** * @file istream.hpp * @brief Input Stream */ #include #line 13 "Library\\src\\utils\\io\\istream.hpp" #line 16 "Library\\src\\utils\\io\\istream.hpp" namespace workspace { namespace _istream_impl { template struct helper { helper(std::istream &__is, _Tp &__x) { if _CXX17_CONSTEXPR (has_begin<_Tp &>::value) for (auto &&__e : __x) helper>(__is, __e); else static_assert(has_begin<_Tp>::value, "istream unsupported type."); } }; template struct helper<_Tp, std::__void_t() >> std::declval<_Tp &>())>> { helper(std::istream &__is, _Tp &__x) { __is >> __x; } }; #ifdef __SIZEOF_INT128__ template <> struct helper<__uint128_t, void> { helper(std::istream &__is, __uint128_t &__x) { std::string __s; __is >> __s; bool __neg = false; if (__s.front() == '-') __neg = true, __s.erase(__s.begin()); __x = 0; for (char __d : __s) { __x *= 10; __d -= '0'; if (__neg) __x -= __d; else __x += __d; } } }; template <> struct helper<__int128_t, void> { helper(std::istream &__is, __int128_t &__x) { std::string __s; __is >> __s; bool __neg = false; if (__s.front() == '-') __neg = true, __s.erase(__s.begin()); __x = 0; for (char __d : __s) { __x *= 10; __d -= '0'; if (__neg) __x -= __d; else __x += __d; } } }; #endif // INT128 template struct helper> { helper(std::istream &__is, std::pair<_T1, _T2> &__x) { helper<_T1>(__is, __x.first), helper<_T2>(__is, __x.second); } }; template struct helper> { helper(std::istream &__is, std::tuple<_Tp...> &__x) { iterate(__is, __x); } private: template void iterate(std::istream &__is, _Tuple &__x) { if _CXX17_CONSTEXPR (_Nm != std::tuple_size<_Tuple>::value) { helper::type>( __is, std::get<_Nm>(__x)), iterate<_Tuple, _Nm + 1>(__is, __x); } } }; } // namespace _istream_impl /** * @brief A wrapper class for std::istream. */ class istream : public std::istream { public: /** * @brief Wrapped operator. */ template istream &operator>>(_Tp &__x) { _istream_impl::helper<_Tp>(*this, __x); if (std::istream::fail()) { static auto once = atexit([] { std::cerr << "\n\033[43m\033[30mwarning: failed to read \'" << abi::__cxa_demangle(typeid(_Tp).name(), 0, 0, 0) << "\'.\033[0m\n\n"; }); assert(!once); } return *this; } }; decltype(auto) cin = static_cast(std::cin); } // namespace workspace #line 10 "Library\\src\\utils\\io\\input.hpp" namespace workspace { namespace _input_impl { template class input { _Tp __value; template struct is_convertible : std::false_type {}; template struct is_convertible<_Arg> : std::is_convertible<_Arg, _Tp> {}; public: operator _Tp &() noexcept { return __value; } operator const _Tp &() const noexcept { return __value; } template input(_Args &&...__args) noexcept : __value(std::forward<_Args>(__args)...) { if _CXX17_CONSTEXPR (not is_convertible<_Args...>::value) cin >> __value; } }; template class input<_Tp, true> : public _Tp { template struct is_convertible : std::false_type {}; template struct is_convertible<_Arg> : std::is_convertible<_Arg, _Tp> {}; public: operator _Tp &() noexcept { return *this; } operator const _Tp &() const noexcept { return *this; } template input(_Args &&...__args) noexcept : _Tp(std::forward<_Args>(__args)...) { if _CXX17_CONSTEXPR (not is_convertible<_Args...>::value) cin >> *this; } template input(std::initializer_list<_E> __l) noexcept : _Tp(__l) {} }; } // namespace _input_impl // Standard input. template class input : public _input_impl::input<_Tp, std::is_class<_Tp>::value> { public: using _input_impl::input<_Tp, std::is_class<_Tp>::value>::input; }; // Integrality. template struct is_integral_ext> : is_integral_ext<_Tp> {}; } // namespace workspace #line 2 "Library\\src\\utils\\io\\print.hpp" /** * @file print.hpp * @brief Print */ #line 2 "Library\\src\\utils\\io\\ostream.hpp" /** * @file ostream.hpp * @brief Output Stream */ #line 9 "Library\\src\\utils\\io\\ostream.hpp" #line 11 "Library\\src\\utils\\io\\ostream.hpp" namespace workspace { template struct is_ostream { template static std::true_type __test(std::basic_ostream<_Args...> *); static std::false_type __test(void *); constexpr static bool value = decltype(__test(std::declval<_Os *>()))::value; }; template using ostream_ref = typename std::enable_if::value, _Os &>::type; /** * @brief Stream insertion operator for C-style array. * * @param __os Output stream * @param __a Array * @return Reference to __os. */ template typename std::enable_if 2), ostream_ref<_Os>>::type operator<<(_Os &__os, const _Tp (&__a)[_Nm]) { if _CXX17_CONSTEXPR (_Nm) { __os << *__a; for (auto __i = __a + 1, __e = __a + _Nm; __i != __e; ++__i) __os << ' ' << *__i; } return __os; } /** * @brief Stream insertion operator for std::array. * * @param __os Output stream * @param __a Array * @return Reference to __os. */ template ostream_ref<_Os> operator<<(_Os &__os, const std::array<_Tp, _Nm> &__a) { if _CXX17_CONSTEXPR (_Nm) { __os << __a[0]; for (size_t __i = 1; __i != _Nm; ++__i) __os << ' ' << __a[__i]; } return __os; } /** * @brief Stream insertion operator for std::pair. * * @param __os Output stream * @param __p Pair * @return Reference to __os. */ template ostream_ref<_Os> operator<<(_Os &__os, const std::pair<_T1, _T2> &__p) { return __os << __p.first << ' ' << __p.second; } /** * @brief Stream insertion operator for std::tuple. * * @param __os Output stream * @param __t Tuple * @return Reference to __os. */ template typename std::enable_if::value + 1), ostream_ref<_Os>>::type operator<<(_Os &__os, const _Tp &__t) { if _CXX17_CONSTEXPR (_Nm != std::tuple_size<_Tp>::value) { if _CXX17_CONSTEXPR (_Nm) __os << ' '; __os << std::get<_Nm>(__t); operator<<<_Os, _Tp, _Nm + 1>(__os, __t); } return __os; } template ()))> typename std::enable_if< !std::is_convertible, std::string>::value && !std::is_convertible, char *>::value, ostream_ref<_Os>>::type operator<<(_Os &__os, const _Container &__cont) { bool __h = true; for (auto &&__e : __cont) __h ? __h = 0 : (__os << ' ', 0), __os << __e; return __os; } #ifdef __SIZEOF_INT128__ /** * @brief Stream insertion operator for __int128_t. * * @param __os Output Stream * @param __x 128-bit integer * @return Reference to __os. */ template ostream_ref<_Os> operator<<(_Os &__os, __int128_t __x) { if (!__x) return __os << '0'; if (__x < 0) __os << '-'; char __s[40], *__p = __s; while (__x) { auto __d = __x % 10; *__p++ = '0' + (__x < 0 ? -__d : __d); __x /= 10; } *__p = 0; for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p; return __os << __s; } /** * @brief Stream insertion operator for __uint128_t. * * @param __os Output Stream * @param __x 128-bit unsigned integer * @return Reference to __os. */ template ostream_ref<_Os> operator<<(_Os &__os, __uint128_t __x) { if (!__x) return __os << '0'; char __s[40], *__p = __s; while (__x) *__p++ = '0' + __x % 10, __x /= 10; *__p = 0; for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p; return __os << __s; } #endif } // namespace workspace #line 9 "Library\\src\\utils\\io\\print.hpp" namespace workspace { /** * @brief Print * @tparam _Sep * @tparam _End */ template void print(_Tp &&__x, _Args &&...__args) noexcept { if _CXX17_CONSTEXPR (sizeof...(_Args)) cout << __x << _Sep, print(std::forward<_Args>(__args)...); else cout << __x << _End; } void flush() noexcept { cout << std::flush; } } // namespace workspace #line 13 "other-workspace\\y.cc" signed main() { using namespace workspace; io_setup(15); /* given case_info.read(); //*/ /* unspecified case_info.total = -1; //*/ return case_info.iterate(); } #line 2 "Library\\src\\graph\\directed\\flow\\min_cost_flow.hpp" /** * @file min_cost_flow.hpp * @brief Minimum Cost Flow */ #line 10 "Library\\src\\graph\\directed\\flow\\min_cost_flow.hpp" #line 2 "Library\\src\\graph\\directed\\flow\\base.hpp" /** * @file base.hpp * @brief Flow Graph * @date 2021-01-15 * * */ #line 15 "Library\\src\\graph\\directed\\flow\\base.hpp" namespace workspace { template class flow_graph { protected: class adjacency_impl; public: using container_type = std::vector; using size_type = typename container_type::size_type; class unweighted_edge { public: size_type tail; // Source size_type head; // Destination _Cap capacity; // Capacity _Cap flow; // Flow unweighted_edge(size_type __s, size_type __d, const _Cap &__u = 1) : tail(__s), head(__d), capacity(__u), flow(0) { assert(!(capacity < static_cast<_Cap>(0))); } // tail, head, capacity, flow template friend _Os &operator<<(_Os &__os, const unweighted_edge &__e) { return __os << __e.tail << ' ' << __e.head << ' ' << __e.capacity << ' ' << __e.flow; } protected: unweighted_edge() = default; unweighted_edge(size_type __s, size_type __d, const _Cap &__u, const _Cap &__f) : tail(__s), head(__d), capacity(__u), flow(__f) {} unweighted_edge make_rev() const { return {head, tail, flow, capacity}; } }; class weighted_edge : public unweighted_edge { public: _Cost cost; // _Cost weighted_edge(const unweighted_edge &__e, const _Cost &__c = 0) : unweighted_edge(__e), cost(__c) {} weighted_edge(size_type __s, size_type __d, const _Cap &__u = 1, const _Cost &__c = 0) : unweighted_edge(__s, __d, __u), cost(__c) {} // tail, head, capacity, flow, cost template friend _Os &operator<<(_Os &__os, const weighted_edge &__e) { return __os << static_cast(__e) << ' ' << __e.cost; } protected: weighted_edge() = default; weighted_edge make_rev() const { return {unweighted_edge::make_rev(), -cost}; } }; using edge = std::conditional_t::value, unweighted_edge, weighted_edge>; protected: struct edge_impl : edge { bool aux = false; edge_impl *rev = nullptr; edge_impl() = default; edge_impl(const edge &__e) : edge(__e) {} edge_impl(edge &&__e) : edge(__e) {} void push(_Cap __f) { edge::capacity -= __f; edge::flow += __f; if (rev) { rev->capacity += __f; rev->flow -= __f; } } edge_impl make_rev() { edge_impl __e = edge::make_rev(); __e.aux = true; __e.rev = this; return __e; } }; public: class adjacency { public: using value_type = edge; using reference = edge &; using const_reference = edge const &; using pointer = edge *; using const_pointer = const edge *; class iterator { edge_impl *__p; public: iterator(edge_impl *__p = nullptr) : __p(__p) {} bool operator!=(const iterator &__x) const { return __p != __x.__p; } bool operator==(const iterator &__x) const { return __p == __x.__p; } iterator &operator++() { do ++__p; while (__p->rev && __p->aux); return *this; } iterator operator++(int) { auto __cp = *this; do ++__p; while (__p->rev && __p->aux); return __cp; } iterator &operator--() { do --__p; while (__p->aux); return *this; } iterator operator--(int) { auto __cp = *this; do --__p; while (__p->aux); return __cp; } pointer operator->() const { return __p; } reference operator*() const { return *__p; } }; class const_iterator { const edge_impl *__p; public: const_iterator(const edge_impl *__p = nullptr) : __p(__p) {} bool operator!=(const const_iterator &__x) const { return __p != __x.__p; } bool operator==(const const_iterator &__x) const { return __p == __x.__p; } const_iterator &operator++() { do ++__p; while (__p->rev && __p->aux); return *this; } const_iterator operator++(int) { auto __cp = *this; do ++__p; while (__p->rev && __p->aux); return __cp; } const_iterator &operator--() { do --__p; while (__p->aux); return *this; } const_iterator operator--(int) { auto __cp = *this; do --__p; while (__p->aux); return __cp; } const_pointer operator->() const { return __p; } const_reference operator*() const { return *__p; } }; adjacency() : first(new edge_impl[2]), last(first + 1), __s(first), __t(first) {} ~adjacency() { delete[] first; } const_reference operator[](size_type __i) const { assert(__i < size()); return *(first + __i); } size_type size() const { return __t - first; } auto begin() { return iterator{__s}; } auto begin() const { return const_iterator{__s}; } auto end() { return iterator{__t}; } auto end() const { return const_iterator{__t}; } /** * @brief Construct a new adjacency object * * @param __x Rvalue reference to another object */ adjacency(adjacency &&__x) : first(nullptr) { operator=(std::move(__x)); } /** * @brief Assignment operator. * * @param __x Rvalue reference to another object * @return Reference to this object. */ adjacency &operator=(adjacency &&__x) { delete[] first; first = __x.first, __x.first = nullptr; last = __x.last, __s = __x.__s, __t = __x.__t; return *this; } protected: edge_impl *first, *last, *__s, *__t; }; using value_type = adjacency; using reference = adjacency &; using const_reference = adjacency const &; protected: class adjacency_impl : public adjacency { public: using base = adjacency; using base::__s; using base::__t; using base::first; using base::last; using iterator = edge_impl *; iterator push(edge_impl &&__e) { if (__t == last) { size_type __n(last - first); iterator loc = new edge_impl[__n << 1 | 1]; __s += loc - first; __t = loc; for (iterator __p{first}; __p != last; ++__p, ++__t) { *__t = *__p; if (__p->rev) __p->rev->rev = __t; } delete[] first; first = loc; last = __t + __n; } *__t = std::move(__e); if (__s->aux) ++__s; return __t++; } iterator begin() const { return first; } iterator end() const { return __t; } }; // Only member variable. container_type graph; public: /** * @brief Construct a new flow graph object * * @param __n Number of vertices */ flow_graph(size_type __n = 0) : graph(__n) {} /** * @brief Construct a new flow graph object * * @param __x Const reference to another object */ flow_graph(const flow_graph &__x) : graph(__x.size()) { for (auto &&__adj : __x) for (auto &&__e : __adj) add_edge(__e); } /** * @brief Construct a new flow graph object * * @param __x Rvalue reference to another object */ flow_graph(flow_graph &&__x) : graph(std::move(__x.graph)) {} /** * @brief Assignment operator. * * @param __x Const reference to another object * @return Reference to this object. */ flow_graph &operator=(const flow_graph &__x) { return operator=(std::move(flow_graph{__x})); } /** * @brief Assignment operator. * * @param __x Rvalue reference to another object * @return Reference to this object. */ flow_graph &operator=(flow_graph &&__x) { graph = std::move(__x.graph); return *this; } /** * @return Whether the graph is empty. */ bool empty() const { return graph.empty(); } /** * @return Number of nodes. */ size_type size() const { return graph.size(); } /** * @param node Node * @return Referece to the adjacency list of the node. */ reference operator[](size_type node) { assert(node < size()); return graph[node]; } /** * @param node Node * @return Const referece to the adjacency list of the node. */ const_reference operator[](size_type node) const { assert(node < size()); return graph[node]; } class iterator : public container_type::iterator { using base = typename container_type::iterator; public: using reference = adjacency &; using pointer = adjacency *; iterator(const base &__i) : base(__i) {} pointer operator->() const { return base::operator->(); } reference operator*() const { return base::operator*(); } }; class const_iterator : public container_type::const_iterator { using base = typename container_type::const_iterator; public: using const_reference = const adjacency &; using const_pointer = const adjacency *; const_iterator(const base &__i) : base(__i) {} const_pointer operator->() const { return base::operator->(); } const_reference operator*() const { return base::operator*(); } }; auto begin() { return iterator{graph.begin()}; } auto begin() const { return const_iterator{graph.begin()}; } auto end() { return iterator{graph.end()}; } auto end() const { return const_iterator{graph.end()}; } /** * @brief Add a node to the graph. * * @return Index of the node. */ size_type add_node() { return add_nodes(1).front(); } /** * @brief Add some nodes to the graph. * * @param __n Number of nodes added * @return List of indices of the nodes. */ virtual std::vector add_nodes(size_type __n) { std::vector __nds(__n); std::iota(__nds.begin(), __nds.end(), graph.size()); __n += graph.size(); if (__n > graph.capacity()) { flow_graph __x(__n); for (auto &&adj : graph) for (auto &&__e : adj) if (!__e.aux) __x.add_edge(__e); graph = std::move(__x.graph); } else graph.resize(__n); return __nds; } /** * @brief Add a directed edge to the graph. * * @return Reference to the edge. */ template typename std::enable_if::value, edge &>::type add_edge(_Args &&...__args) { edge_impl __e = edge(std::forward<_Args>(__args)...); assert(__e.tail < size()); assert(__e.head < size()); edge_impl *__p = graph[__e.tail].push(std::move(__e)); // Careful with a self loop. if (__e.tail != __e.head) __p->rev = graph[__e.head].push(__p->make_rev()); return *__p; } /** * @brief Add a directed edge to the graph. * * @return Reference to the edge. */ template typename std::enable_if<(std::tuple_size>::value >= 0), edge &>::type add_edge(_Tp &&__t) { return _unpack_directed(std::forward<_Tp>(__t)); } /** * @brief Add an undirected edge to the graph. Its cost must be non-negative. * * @return Reference to the edge. */ template edge &add_undirected_edge(_Args &&...__args) { edge_impl __e = edge(std::forward<_Args>(__args)...); assert(__e.tail < size()); assert(__e.head < size()); (__e.flow += __e.flow) += __e.capacity; edge_impl *__p = graph[__e.tail].push(std::move(__e)); // Careful with a self loop. if (__e.tail != __e.head) { edge_impl __r = __p->make_rev(); __r.aux = false; __p->rev = graph[__e.head].push(std::move(__r)); } return *__p; } /** * @brief Add an undirected edge to the graph. Its cost must be non-negative. * * @return Reference to the edge. */ template typename std::enable_if<(std::tuple_size>::value >= 0), edge &>::type add_undirected_edge(_Tp &&__t) { return _unpack_undirected(std::forward<_Tp>(__t)); } protected: // internal template decltype(auto) _unpack_directed(_Tp &&__t, _Args &&...__args) { if constexpr (_Nm == std::tuple_size>::value) return add_edge(std::forward<_Args>(__args)...); else return _unpack_directed<_Tp, _Nm + 1>(std::forward<_Tp>(__t), std::forward<_Args>(__args)..., std::get<_Nm>(__t)); } // internal template decltype(auto) _unpack_undirected(_Tp &&__t, _Args &&...__args) { if constexpr (_Nm == std::tuple_size>::value) return add_undirected_edge(std::forward<_Args>(__args)...); else return _unpack_undirected<_Tp, _Nm + 1>(std::forward<_Tp>(__t), std::forward<_Args>(__args)..., std::get<_Nm>(__t)); } template friend _Os &operator<<(_Os &__os, flow_graph const &__g) { for (const auto &adj : __g) for (const auto &e : adj) __os << e << "\n"; return __os; } }; } // namespace workspace #line 13 "Library\\src\\graph\\directed\\flow\\min_cost_flow.hpp" namespace workspace { /** * @brief Capacity Scaling Algorithm. * * @tparam _Cap Capacity type * @tparam _Cost Cost type */ template class min_cost_flow : public flow_graph<_Cap, _Cost> { using base = flow_graph<_Cap, _Cost>; using edge_impl = typename base::edge_impl; public: using edge = typename base::edge; using size_type = typename base::size_type; /** * @brief Construct a new min_cost_flow object * * @param __n Number of vertices */ min_cost_flow(size_type __n = 0) : base::flow_graph(__n), b(__n) {} std::vector add_nodes(size_type __n) override { b.resize(b.size() + __n); return base::add_nodes(__n); } using base::add_edge; /** * @brief Add a directed edge to the graph. * * @param __s Source * @param __d Destination * @param __l Lower bound of flow * @param __u Upper bound of flow * @param __c _Cost * @return Reference to the edge. */ edge &add_edge(size_type __s, size_type __d, _Cap __l, _Cap __u, _Cost __c) { assert(!(__u < __l)); b[__s] -= __l; b[__d] += __l; auto &__e = base::add_edge(__s, __d, __u - __l, __c); __e.flow = __l; return __e; } /** * @brief Add an undirected edge to the graph. * * @return Reference to the edge. */ template edge &add_undirected_edge(_Args &&...__args) { auto &__e = static_cast( base::add_undirected_edge(std::forward<_Args>(__args)...)); assert(!(__e.cost < 0)); __e.rev->cost = __e.cost; return __e; } /** * @brief Increase the balance of a node. * * @param node * @param __f Default: 1 */ void supply(size_type node, _Cap __f = 1) { assert(node < b.size()); b[node] += __f; } /** * @brief Decrease the balance of a node. * * @param node * @param __f Default: 1 */ void demand(size_type node, _Cap __f = 1) { assert(node < b.size()); b[node] -= __f; } /** * @return Balance. */ const auto &balance() const { return b; } /** * @param node Node * @return Balance of the node. */ _Cap balance(size_type node) const { return b[node]; } /** * @return Potential. The dual solution. */ const auto &potential() const { return p; } /** * @param node Node * @return Potential of the node. */ _Cost potential(size_type node) const { return p[node]; } /** * @return _Cost of current flow. */ _Cost cost() const { return current; } /** * @brief Run Capacity Scaling Algorithm. * * @return Whether a balanced flow exists. */ bool run() { p.resize(b.size()); _Cap delta = 0; for (auto &&__adj : base::graph) for (auto &&__e : __adj) delta = std::max(delta, __e.capacity); if (delta == static_cast<_Cap>(0)) return std::all_of(b.begin(), b.end(), [](_Cap __x) { return __x == static_cast<_Cap>(0); }); parent.resize(b.size()); while (static_cast<_Cap>(0) < delta) { delta /= 2; for (auto &&__adj : base::graph) for (auto &&__e : __adj) if (delta < __e.capacity && __e.cost < p[__e.head] - p[__e.tail]) { b[__e.tail] -= __e.capacity; b[__e.head] += __e.capacity; __e.push(__e.capacity); } sources.clear(); sinks.clear(); for (size_type __v = 0; __v != b.size(); ++__v) if (delta < b[__v]) sources.emplace_back(__v); else if (b[__v] < -delta) sinks.emplace_back(__v); while (dual(delta)) { primal(delta); sources.erase( std::remove_if(sources.begin(), sources.end(), [&](auto __v) { return !(delta < b[__v]); }), sources.end()); sinks.erase( std::remove_if(sinks.begin(), sinks.end(), [&](auto __v) { return !(b[__v] < -delta); }), sinks.end()); } } current = 0; for (auto &&__adj : base::graph) for (auto &&__e : __adj) if (!__e.aux) current += __e.cost * __e.flow; return sources.empty() && sinks.empty(); } protected: // _Cost of flow. _Cost current{}; // Balance std::vector<_Cap> b; // The dual solution. std::vector<_Cost> p; std::vector parent; std::vector sources, sinks; // Augment along the dual solution. void primal(_Cap delta) { for (auto __t : sinks) if (parent[__t]) { auto __f = -b[__t]; auto __s = __t; while (parent[__s]) __f = std::min(__f, parent[__s]->capacity), __s = parent[__s]->tail; if (delta < b[__s]) { __f = std::min(__f, b[__s]); b[__s] -= __f; b[__t] += __f; for (auto *__p = parent[__t]; __p; __p = parent[__p->tail]) { __p->push(__f); parent[__p->head] = nullptr; } } } } // Improve the dual solution. bool dual(_Cap delta) { std::fill(parent.begin(), parent.end(), nullptr); size_type reachable = 0; struct state { size_type __v; _Cost __d; state(size_type __v, _Cost __d) : __v(__v), __d(__d) {} bool operator<(const state &__x) const { return __x.__d < __d; } }; std::priority_queue __q; decltype(p) __nx(p.size(), numeric_limits<_Cost>::max()); _Cost __ld = 0; for (auto __v : sources) { __nx[__v] = p[__v]; __q.emplace(__v, 0); } while (!__q.empty()) { auto [__v, __d] = __q.top(); __q.pop(); if (__d + p[__v] != __nx[__v]) continue; __ld = __d; if (b[__v] < -delta && ++reachable == sinks.size()) break; for (auto &__e : base::graph[__v]) if (delta < __e.capacity && (__d = __nx[__v] + __e.cost) < __nx[__e.head]) { __q.emplace(__e.head, (__nx[__e.head] = __d) - p[__e.head]); parent[__e.head] = &__e; } } for (size_type __v = 0; __v != p.size(); ++__v) p[__v] = std::min(__nx[__v], p[__v] += __ld); return reachable; } }; } // namespace workspace #line 29 "other-workspace\\y.cc" namespace workspace { void main() { // start here! input n, k; min_cost_flow mcf(n); mcf.supply(0, k); mcf.demand(n - 1, k); vector rate; for (auto v : range(n)) { if (v) { mcf.add_edge(v - 1, v, k, 0); } input a, m; while (m--) { input b; --b; mcf.add_edge(b, v, 1, rate[b] - a); } rate.emplace_back(a); } assert(mcf.run()); print(-mcf.cost()); } } // namespace workspace