use std::cmp::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt

; // Depends on MInt.rs fn fact_init(w: usize) -> (Vec, Vec) { let mut fac = vec![MInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1 .. w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0 .. w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } // Tags: combinatorics, off-by-one-error fn main() { input!(n: usize, k: usize, m: usize1); assert_eq!(std::mem::size_of::(), 8); let nn = MInt::new(n as i64); let (fac, invfac) = fact_init(n + 1); let mut tot = MInt::new(0); if m == 0 { for per in 1..n + 1 { if k % per == 0 { tot += fac[n - 1] * invfac[n - per] * nn.pow((n - per) as i64); } } } else { for per in 2..n + 1 { let r = k % per; let tmp = fac[n - 2] * invfac[n - per] * nn.pow((n - per) as i64); if r == 0 { continue; } tot += tmp; } let mut acc = vec![MInt::new(0); n]; let mut cur = MInt::new(1); for i in 0..n - 1 { acc[i + 1] = acc[i] + invfac[i] * cur; cur *= nn; } for per in 1..n { let hi = min(n - 1 - per, k - 1); // tmp = (n - 1 - per)!/(n - 1 - per)! * n^{n - 1 - per} + .. + (n - 1 - per)!/(n - 1 - per - hi)! * n^{n - 1 - per - hi} let tmp = fac[n - 1 - per] * (acc[n - per] - acc[n - 1 - per - hi]); tot += tmp * fac[n - 2] * invfac[per - 1] * invfac[n - per - 1] * fac[per - 1]; } if k < n { for per in 1..n - k { // tmp = (n - 2 - per)!/0! * n^{0} + .. + (n - 2 - per)!/(n - 1 - per - k)! * n^{n - 1 - per - k} let tmp = fac[n - 2 - per] * acc[n - per - k]; tot += tmp * fac[n - 2] * invfac[per] * invfac[n - per - 2] * fac[per - 1] * per as i64; } } } println!("{}", tot); }