#include #include #include #define REP_(i, a_, b_, a, b, ...) \ for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using i64 = long long; template inline bool chmax(T &a, U b) { return a < b and ((a = std::move(b)), true); } template inline bool chmin(T &a, U b) { return a > b and ((a = std::move(b)), true); } template inline int ssize(const T &a) { return (int) std::size(a); } template std::istream &operator>>(std::istream &is, std::vector &a) { for (auto &x: a) is >> x; return is; } template std::ostream &operator<<(std::ostream &os, const std::pair &a) { return os << "(" << a.first << ", " << a.second << ")"; } template std::ostream &print_seq(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream &os = std::cout) { auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) os << sep; os << *it; } return os << ends; } template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type { }; template::value && !std::is_same::value && !std::is_same::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return print_seq(a, ", ", "", (os << "{")) << "}"; } void print() { std::cout << "\n"; } template void print(const T &x) { std::cout << x << "\n"; } template void print(const Head &head, Tail... tail) { std::cout << head << " "; print(tail...); } struct Input { template operator T() const { T x; std::cin >> x; return x; } } in; #ifdef MY_DEBUG #include "debug_dump.hpp" #else #define DUMP(...) #endif using namespace std; template class MinCostFlowDAG { public: static constexpr Cost INF = std::numeric_limits::max() / 4; struct Edge { int to, rev; Cap cap; Cost cost; }; const int V; std::vector> G; std::vector h, dist; std::vector deg, ord, prevv, preve; explicit MinCostFlowDAG(int node_count) : V(node_count), G(V), h(V, INF), dist(V, 0), deg(V, 0), prevv(V), preve(V) {} void add_edge(const int from, const int to, const Cap cap, const Cost cost) { if (cap == 0) return; G[from].push_back(Edge{to, (int) G[to].size(), cap, cost}); G[to].push_back(Edge{from, (int) G[from].size() - 1, 0, -cost}); ++deg[to]; } std::optional flow(const int s, const int t, Cap f) { assert(topological_sort()); // must be a DAG. calc_potential(s); Cost res = 0; while (f > 0) { dijkstra(s); if (dist[t] == INF) return std::nullopt; update(s, t, f, res); } return res; } private: // using DijkstraState = pair; struct DijkstraState { Cost dist; int node; }; friend bool operator>(const DijkstraState &x, const DijkstraState &y) { return x.dist > y.dist; } friend bool operator<(const DijkstraState &x, const DijkstraState &y) { return x.dist < y.dist; } bool topological_sort() { queue que; for (int i = 0; i < V; ++i) { if (deg[i] == 0) que.push(i); } while (!que.empty()) { const int p = que.front(); que.pop(); ord.push_back(p); for (auto &e: G[p]) { if (e.cap > 0 && --deg[e.to] == 0) que.push(e.to); } } return (*max_element(deg.begin(), deg.end()) == 0); } void calc_potential(const int s) { h[s] = 0; for (const int v: ord) { if (h[v] == INF) continue; for (const Edge &e: G[v]) { if (e.cap > 0) h[e.to] = min(h[e.to], h[v] + e.cost); } } } void dijkstra(const int s) { using Heap = boost::heap::fibonacci_heap< DijkstraState, boost::heap::compare>>; Heap heap; fill(dist.begin(), dist.end(), INF); dist[s] = 0; vector> handles(V); handles[s] = heap.push({dist[s], s}); while (not heap.empty()) { const auto cur = heap.top(); heap.pop(); const int v = cur.node; if (dist[v] < cur.dist) continue; for (int i = 0; i < (int) G[v].size(); ++i) { const Edge &e = G[v][i]; const Cost new_dist = dist[v] + e.cost + h[v] - h[e.to]; if (e.cap > 0 and dist[e.to] > new_dist) { dist[e.to] = new_dist; prevv[e.to] = v; preve[e.to] = i; if (handles[e.to]) { heap.update(*handles[e.to], {new_dist, e.to}); } else { handles[e.to] = heap.push({new_dist, e.to}); } } } } } void update(const int s, const int t, Cap &f, Cost &res) { for (int i = 0; i < V; i++) { if (dist[i] != INF) h[i] += dist[i]; } Cap d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += h[t] * d; for (int v = t; v != s; v = prevv[v]) { Edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } }; auto solve() { const int n = in, K = in; vector a(n); MinCostFlowDAG g(n); REP(i, n) { a[i] = in; int m = in; REP(j, m) { int b = in; --b; i64 cost = a[b] - a[i]; if (cost < 0) { g.add_edge(b, i, 1, cost); } } } REP(i, n - 1) { g.add_edge(i, i + 1, K, 0); } auto ans = g.flow(0, n - 1, K); assert(ans.has_value()); return -ans.value(); } int main() { ios_base::sync_with_stdio(false), cin.tie(nullptr); auto ans = solve(); print(ans); }