// ---------- begin Run Length Encoding ---------- fn run_length_encoding(a: &[T]) -> Vec<(T, usize)> { let mut a = a.iter().map(|a| (a.clone(), 1)).collect::>(); a.dedup_by(|a, b| { a.0 == b.0 && { b.1 += a.1; true } }); a } // ---------- end Run Length Encoding ---------- fn rand_memory() -> usize { Box::into_raw(Box::new("I hope this is a random number")) as usize } fn rand() -> usize { static mut X: usize = 0; unsafe { if X == 0 { X = rand_memory(); } X ^= X << 13; X ^= X >> 17; X ^= X << 5; X } } fn shuffle(a: &mut [T]) { for i in 1..a.len() { let p = rand() % (i + 1); a.swap(i, p); } } // ---------- begin max flow (Dinic) ---------- mod maxflow { pub trait MaxFlowCapacity: Copy + Ord + std::ops::Add + std::ops::Sub + std::fmt::Display { fn zero() -> Self; fn inf() -> Self; } macro_rules! impl_primitive_integer_capacity { ($x:ty, $y:expr) => { impl MaxFlowCapacity for $x { fn zero() -> Self { 0 } fn inf() -> Self { $y } } }; } impl_primitive_integer_capacity!(u32, std::u32::MAX); impl_primitive_integer_capacity!(u64, std::u64::MAX); impl_primitive_integer_capacity!(i32, std::i32::MAX); impl_primitive_integer_capacity!(i64, std::i64::MAX); #[derive(Clone)] struct Edge { to_: u32, inv_: u32, cap_: Cap, } impl Edge { fn new(to: usize, inv: usize, cap: Cap) -> Self { Edge { to_: to as u32, inv_: inv as u32, cap_: cap, } } fn to(&self) -> usize { self.to_ as usize } fn inv(&self) -> usize { self.inv_ as usize } } impl Edge { fn add(&mut self, cap: Cap) { self.cap_ = self.cap_ + cap; } fn sub(&mut self, cap: Cap) { self.cap_ = self.cap_ - cap; } fn cap(&self) -> Cap { self.cap_ } } pub struct Graph { graph: Vec>>, } #[allow(dead_code)] pub struct EdgeIndex { src: usize, dst: usize, x: usize, y: usize, } impl Graph { pub fn new(size: usize) -> Self { Self { graph: vec![vec![]; size], } } pub fn add_edge(&mut self, src: usize, dst: usize, cap: Cap) -> EdgeIndex { assert!(src.max(dst) < self.graph.len()); assert!(cap >= Cap::zero()); assert!(src != dst); let x = self.graph[src].len(); let y = self.graph[dst].len(); self.graph[src].push(Edge::new(dst, y, cap)); self.graph[dst].push(Edge::new(src, x, Cap::zero())); EdgeIndex { src, dst, x, y } } // src, dst, used, intial_capacity #[allow(dead_code)] pub fn get_edge(&self, e: &EdgeIndex) -> (usize, usize, Cap, Cap) { let max = self.graph[e.src][e.x].cap() + self.graph[e.dst][e.y].cap(); let used = self.graph[e.dst][e.y].cap(); (e.src, e.dst, used, max) } pub fn flow(&mut self, src: usize, dst: usize) -> Cap { let size = self.graph.len(); assert!(src.max(dst) < size); assert!(src != dst); let mut queue = std::collections::VecDeque::new(); let mut level = vec![0; size]; let mut it = vec![0; size]; let mut ans = Cap::zero(); for _ in 0.. { (|| { level.clear(); level.resize(size, 0); level[src] = 1; queue.clear(); queue.push_back(src); while let Some(v) = queue.pop_front() { let d = level[v] + 1; for e in self.graph[v].iter() { let u = e.to(); if e.cap() > Cap::zero() && level[u] == 0 { level[u] = d; if u == dst { return; } queue.push_back(u); } } } })(); if level[dst] == 0 { break; } it.clear(); it.resize(size, 0); loop { let f = self.dfs(src, dst, Cap::inf(), &mut it, &level); if f == Cap::zero() { break; } ans = ans + f; } } ans } fn dfs(&mut self, v: usize, dst: usize, cap: Cap, it: &mut [usize], level: &[u32]) -> Cap { if v == dst { return cap; } while let Some((u, c, inv)) = self.graph[v].get(it[v]).map(|p| (p.to(), p.cap(), p.inv())) { if level[u] == level[v] + 1 && cap > Cap::zero() { let cap = cap.min(c); let c = self.dfs(u, dst, cap, it, level); if c > Cap::zero() { self.graph[v][it[v]].sub(c); self.graph[u][inv].add(c); return c; } } it[v] += 1; } Cap::zero() } } } // ---------- end max flow (Dinic) ---------- // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- fn run() { input! { n: usize, e: [(usize1, usize1); n], } let mut g = maxflow::Graph::new(2 * n + 2); let mut edge = vec![]; let src = 2 * n; let dst = 2 * n + 1; for (i, &(a, b)) in e.iter().enumerate() { let x = g.add_edge(i, a + n, 1); let y = g.add_edge(i, b + n, 1); edge.push((x, y)); } for i in 0..n { g.add_edge(src, i, 1); g.add_edge(i + n, dst, 1); } let f = g.flow(src, dst); if f != n as u32 { println!("No"); return; } use std::io::Write; let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); writeln!(out, "Yes").ok(); for (x, y) in edge { for x in [x, y].iter() { let e = g.get_edge(x); if e.2 == 1 { writeln!(out, "{}", e.1 - n + 1).ok(); } } } } fn main() { run(); }