class fenwick_tree(object): def __init__(self, n): self.n = n self.log = n.bit_length() self.data = [0] * n def __sum(self, r): s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s def add(self, p, x): """ a[p] += xを行う""" p += 1 while p <= self.n: self.data[p - 1] += x p += p & -p def sum(self, l, r): """a[l] + a[l+1] + .. + a[r-1]を返す""" return self.__sum(r) - self.__sum(l) def lower_bound(self, x): """a[0] + a[1] + .. a[i] >= x となる最小のiを返す""" if x <= 0: return -1 i = 0 k = 1 << self.log while k: if i + k <= self.n and self.data[i + k - 1] < x: x -= self.data[i + k - 1] i += k k >>= 1 return i N, M, K = map(int, input().split()) elem = list(range(N-1)) elem.append(M - sum(elem)) elem.reverse() pos = [0] * N for i in range(N): d = min(K, i) K -= d pos[i] = d bit = fenwick_tree(N) for i in range(N): bit.add(i, 1) ans = [0] * N for i in reversed(range(N)): x = bit.lower_bound(pos[i]+1) bit.add(x, -1) ans[x] = elem[i] print(*ans, sep="\n")