INF = 10 ** 18 def warshall_floyd(matrix): n = len(matrix) dist = [[d for d in row] for row in matrix] for k in range(n): for i in range(n): for j in range(n): dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]) return dist def cost(state, v): res = INF for nxt_v in range(n): if state & (1 << nxt_v): res = min(res, dist[v][nxt_v]) if res == INF: return 0 else: return res n, m, k = map(int, input().split()) a = list(map(int, input().split())) edges = [list(map(int, input().split())) for i in range(m)] matrix = [[INF] * n for i in range(n)] for i in range(n): matrix[i][i] = 0 for u, v, c in edges: u -= 1 v -= 1 matrix[u][v] = c matrix[v][u] = c dist = warshall_floyd(matrix) costs = [[INF] * (1 << n) for i in range(n)] for v in range(n): for bit_state in range(1 << n): costs[v][bit_state] = cost(bit_state, v) dp = [[INF] * (1 << n) for i in range(k + 1)] dp[0][0] = 0 for i in range(k): for bit_state in range(1 << n): if bin(bit_state).count("1") != i: continue for new_v in range(n): if bit_state & (1 << new_v): continue new_state = bit_state | (1 << new_v) dp[i + 1][new_state] = min(dp[i + 1][new_state], dp[i][bit_state] + a[new_v] + costs[new_v][bit_state]) print(min(dp[k]))