#define _USE_MATH_DEFINES #include #include using namespace std; /* #include using namespace atcoder; */ /* #include #include using bll = boost::multiprecision::cpp_int; using bdouble = boost::multiprecision::number>; using namespace boost::multiprecision; */ #if defined(LOCAL_TEST) || defined(LOCAL_DEV) #define BOOST_STACKTRACE_USE_ADDR2LINE #define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line #define _GNU_SOURCE 1 #include #endif #ifdef LOCAL_TEST namespace std { template class dvector : public std::vector { public: using std::vector::vector; template , std::nullptr_t> = nullptr> std::vector::reference operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> const T_ operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> T_& operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> const T_& operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } }; template , typename Allocator = std::allocator> class dmultiset : public std::multiset { public: using std::multiset::multiset; const typename std::multiset::iterator erase(const typename std::multiset::iterator it) { return std::multiset::erase(it); } std::size_t erase([[maybe_unused]] const T& x) { std::cerr << boost::stacktrace::stacktrace() << '\n'; assert(false); } std::size_t erase_all_elements(const T& x) { return std::multiset::erase(x); } }; } #define vector dvector #define multiset dmultiset class SIGFPE_exception : std::exception {}; class SIGSEGV_exception : std::exception {}; void catch_SIGFPE([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); } void catch_SIGSEGV([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); } signed convertedmain(); signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); } #define main() convertedmain() #else #define erase_all_elements erase #endif #ifdef LOCAL_DEV template std::ostream& operator<<(std::ostream& s, const std::pair& p) { return s << "(" << p.first << ", " << p.second << ")"; } template std::ostream& operator<<(std::ostream& s, const std::array& a) { s << "{ "; for (std::size_t i = 0; i < N; ++i){ s << a[i] << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::set& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::multiset& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::map& m) { s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::deque& v) { for (std::size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; } template std::ostream& operator<<(std::ostream& s, const std::vector& v) { for (std::size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; } template std::ostream& operator<<(std::ostream& s, const std::vector>& vv) { s << "\\\n"; for (std::size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; } template , std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&v)[N]) { for (std::size_t i = 0; i < N; ++i){ s << v[i]; if (i < N - 1) s << "\t"; } return s; } template , std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&vv)[N][M]) { s << "\\\n"; for (std::size_t i = 0; i < N; ++i){ s << vv[i] << "\n"; } return s; } #if __has_include() template std::ostream& operator<<(std::ostream& s, const __gnu_pbds::tree& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const __gnu_pbds::gp_hash_table& m) { s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; } #endif void debug_impl() { std::cerr << '\n'; } template void debug_impl(const Head& head, const Tail&... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); } #define debug(...) do { std::cerr << ":" << __LINE__ << " (" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return local; } #else #define debug(...) do {} while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return prod; } #endif //#define int long long using ll = long long; //INT_MAX = (1<<31)-1 = 2147483647, INT64_MAX = (1LL<<63)-1 = 9223372036854775807 constexpr ll INF = std::numeric_limits::max() == INT_MAX ? (ll)1e9 + 7 : (ll)1e18; //constexpr ll MOD = (ll)1e9 + 7; //primitive root = 5 constexpr ll MOD = 998244353; //primitive root = 3 constexpr double EPS = 1e-9; constexpr ll dx[4] = {1, 0, -1, 0}; constexpr ll dy[4] = {0, 1, 0, -1}; constexpr ll dx8[8] = {1, 0, -1, 0, 1, 1, -1, -1}; constexpr ll dy8[8] = {0, 1, 0, -1, 1, -1, 1, -1}; #define repoverload3(_1, _2, _3, name, ...) name #define rep3(i, a, b) for(ll i=(a), i##_length=(b); i=(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep3(i, 0, n) #define rrep(...) repoverload3(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define rrepeq3(i, a, b) rrep3(i, (a)+1, (b)+1) #define rrepeq2(i, n) rrep3(i, 1, (n)+1) #define rrepeq1(n) rrep3(i, 1, (n)+1) #define rrepeq(...) repoverload3(__VA_ARGS__, rrepeq3, rrepeq2, rrepeq1)(__VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) void p() { std::cout << '\n'; } template void p(const Head& head, const Tail&... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); } template inline void pv(const std::vector& v) { for(ll i=0, N=v.size(); i inline bool chmax(T& a, T b) { return a < b && (a = b, true); } template inline bool chmin(T& a, T b) { return a > b && (a = b, true); } template inline void uniq(std::vector& v) { std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); } template inline ll sz(const T& v) { return std::size(v); } template std::vector make_vector_impl(std::vector& sizes, typename std::enable_if<(N==1), const T&>::type x) { return std::vector(sizes.front(),x); } template auto make_vector_impl(std::vector& sizes, typename std::enable_if<(N>1), const T&>::type x) { ll size=sizes.back(); sizes.pop_back(); return std::vector(sizes,x))>(size,make_vector_impl(sizes,x)); } template auto make_vector(const ll (&sizes)[N], const T& x=T()) { std::vector s(N); for(std::size_t i=0; i(s,x); } #if __has_include() template , typename std::enable_if_t, std::nullptr_t> = nullptr> struct fmap : public __gnu_pbds::gp_hash_table { using __gnu_pbds::gp_hash_table::gp_hash_table; template fmap(std::initializer_list> il) : __gnu_pbds::gp_hash_table() { for (auto&& x : il) __gnu_pbds::gp_hash_table::insert(std::pair(*x.begin(), *(x.begin() + 1))); } template ll count(const T& x) const { return __gnu_pbds::gp_hash_table::find(x) != __gnu_pbds::gp_hash_table::end(); } }; #else template using fmap = std::map; #endif template struct each_hepler { struct iterator { ll _pos; typename T::iterator _it; iterator(typename T::iterator it): _pos(0), _it(it) {} std::pair::reference> operator*() const { return {_pos, *_it}; } iterator& operator++() { ++_pos; ++_it; return *this; } iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } bool operator==(iterator const& it) const { return _it == it._it; } bool operator!=(iterator const& it) const { return !(*this == it); } }; T& _container; each_hepler(T& t): _container(t) {} iterator begin() const { return iterator(_container.begin()); } iterator end() const { return iterator(_container.end()); } }; template each_hepler each(T& t) { return each_hepler(t); } // for (auto&& [i, val] : each(v)) template class zip_helper { public: class iterator : std::iterator().begin())...>> { private: std::tuple().begin())...> iters_; template auto deref(std::index_sequence) const { return typename iterator::value_type{*std::get(iters_)...}; } template void increment(std::index_sequence) { [[maybe_unused]] auto l = {(++std::get(iters_), 0)...}; } public: explicit iterator(decltype(iters_) iters) : iters_{std::move(iters)} {} iterator& operator++() { increment(std::index_sequence_for{}); return *this; } iterator operator++(int) { auto saved{*this}; increment(std::index_sequence_for{}); return saved; } bool operator!=(const iterator& other) const { return iters_ != other.iters_; } auto operator*() const { return deref(std::index_sequence_for{}); } }; zip_helper(T&... seqs) : begin_{std::make_tuple(seqs.begin()...)}, end_{std::make_tuple(seqs.end()...)} {} iterator begin() const { return begin_; } iterator end() const { return end_; } private: iterator begin_, end_; }; template auto zip(T&&... seqs) { return zip_helper{seqs...}; } // for (auto&& [a, b, c] : zip(A, B, C)) /*-----8<-----template-----8<-----*/ //[lib]johnsons_algorithm.cpp using EdgeCostType = ll; using usize = std::size_t; template class edge_type { public: usize from, to; T cost, rawcost; edge_type() {} edge_type(usize from, usize to, T cost) : from(from), to(to), cost(cost) {} edge_type(usize from, usize to, T cost, T rawcost) : from(from), to(to), cost(cost), rawcost(rawcost) {} bool operator<(const edge_type& r) const { return r.cost < cost; } }; using Edge = edge_type; ostream& operator<<(ostream& s, const Edge& e) { s << "{ " << e.from << " -> " << e.to << ", " << e.cost << " }"; return s; } inline void addedge(vector>& g, usize from, usize to, EdgeCostType cost) { g[from].emplace_back(from, to, cost); g[to].emplace_back(to, from, cost); } //最短路木の親頂点を元にstart->goalの経路を作成 vector buildPath(const vector &prev, ll goal) { vector path; for (ll u = goal; u >= 0; u = prev[u]) path.push_back(u); reverse(path.begin(), path.end()); return path; } template class fibonacci_heap { class node_type; using node_ptr = node_type *; class node_type { public: node_ptr parent; node_ptr child; node_ptr left; node_ptr right; usize rank; bool mark; T key; usize prev; T rawcost; node_type() : parent(nullptr), child(nullptr), left(nullptr), right(nullptr), rank(0), mark(false), key(std::numeric_limits::max()), prev(-1) {} }; vector nodes; node_ptr root; vector table; public: fibonacci_heap(const usize n) : nodes(n), root(nullptr), table(std::ceil(std::log(n + 1) * 2.08), nullptr) {} bool empty() const { return root == nullptr; } edge_type pop() { edge_type ret = {root->prev, static_cast(root - nodes.data()), root->key, root->rawcost}; usize max = 0; const auto push = [&](node_ptr v) -> void { while (true) { node_ptr u = table[v->rank]; if (u == nullptr) { table[v->rank] = v; break; } table[v->rank] = nullptr; if (u->key < v->key) { std::swap(u, v); } const node_ptr c = v->child; if (c == nullptr) { u->left = u; u->right = u; v->child = u; } else { u->left = c->left; u->right = c; c->left->right = u; c->left = u; } u->parent = v; v->rank += 1; } max = std::max(max, v->rank + 1); }; { node_ptr v = root->right; while (v != root) { const node_ptr next = v->right; push(v); v = next; } } if (root->child != nullptr) { node_ptr v = root->child; do { const node_ptr next = v->right; v->mark = false; push(v); v = next; } while (v != root->child); } root = nullptr; for (usize i = 0; i != max; i += 1) { const node_ptr v = table[i]; if (v == nullptr) { continue; } table[i] = nullptr; v->parent = nullptr; if (root == nullptr) { root = v; v->left = v; v->right = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (root->key > v->key) { root = v; } } } return ret; } void update_key(const usize v_, const T key, const usize prev, const T rawcost) { node_ptr v = &nodes[v_]; if (v->key <= key) { return; } v->key = key; v->prev = prev; v->rawcost = rawcost; if (v->left == nullptr) { if (root == nullptr) { v->left = v; v->right = v; root = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (key < root->key) { root = v; } } return; } if (v->parent == nullptr) { if (key < root->key) { root = v; } return; } else { if (v->parent->key <= key) { return; } } while (true) { const node_ptr p = v->parent; v->left->right = v->right; v->right->left = v->left; v->parent = nullptr; p->rank -= 1; if (p->child == v) { if (p->rank == 0) { p->child = nullptr; } else { p->child = v->right; } } v->left = root->left; v->right = root; root->left->right = v; root->left = v; v->mark = false; v = p; if (v->parent == nullptr) { break; } if (!v->mark) { v->mark = true; break; } } if (root->key > key) { root = &nodes[v_]; } } }; /* 計算量:O(E+VlogV) 引数  g:探索するグラフ  start:探索するスタートノード番号 戻り値  dist:スタートノードから各頂点までの距離  prev:最短路木の親頂点 */ void dijkstra(const vector> &g, ll start, vector &dist, vector &prev) { dist.assign(g.size(), INF); dist[start] = 0; prev.assign(g.size(), -1); fibonacci_heap heap(g.size()); heap.update_key(start, 0, -1, 0); while (!heap.empty()) { const auto top = heap.pop(); dist[top.to] = top.rawcost; if (top.from != (usize)-1) prev[top.to] = top.from; for (const auto &edge : g[top.to]) { heap.update_key(edge.to, top.cost + edge.cost, edge.from, top.rawcost + edge.rawcost); } } } bool bellman_ford(const vector> &g, ll start, vector &dist, vector &prev) { ll gsize = g.size(); dist.assign(gsize, INF+INF); dist[start] = 0; prev.assign(gsize, -1); bool negative_cycle = false; for(ll k=0; k dist[e.from] + e.cost) { dist[e.to] = dist[e.from] + e.cost; prev[e.to] = e.from; if (k >= gsize-1) { dist[e.to] = -INF; negative_cycle = true; } } } } } return negative_cycle; } //dijkstraはこれ専用に改造されている //https://dic.kimiyuki.net/johnson-algorithm //全点対間最短経路問題を解くアルゴリズム //負閉路を検出するとtrueを返す その場合dist,prevは使えない //計算量:O(∣V∣^2log∣V∣+∣V∣∣E∣) bool johnsons_algorithm(const vector> &g, vector> &dist, vector> &prev){ ll gsize = g.size(); dist.resize(gsize); prev.resize(gsize); bool hasminusedge = false; vector> convertedg(g); for (auto&& v : convertedg) for (auto&& edge : v) { edge.rawcost = edge.cost; if (edge.cost < 0) { hasminusedge = true; } } if (hasminusedge) { convertedg.emplace_back(); convertedg.back().reserve(gsize); for (ll v = 0; v < gsize; v++) { convertedg.back().emplace_back(gsize, v, 0); } vector bellmandist; vector bellmanprev; bool negative_cycle = bellman_ford(convertedg, gsize, bellmandist, bellmanprev); if (negative_cycle) return true; convertedg.pop_back(); for (auto&& v : convertedg) for (auto&& edge : v) { edge.cost += bellmandist[edge.from] - bellmandist[edge.to]; } } for (ll v = 0; v < gsize; v++) { dijkstra(convertedg, v, dist[v], prev[v]); } return false; } [[nodiscard]] inline ll up(ll bit, ll i) { return bit | (1LL<::digits -> llのビット数の定数 //__builtin_popcountll(bit); -> bitの立っている個数を返す //__builtin_clzll(bit); -> bitの頭の0の数を返す 0のときは未定義に注意 //__builtin_ctzll(bit); -> bitのお尻の0の数を返す 0のときは未定義に注意 /* //bitの部分集合を全列挙 for (ll subbit = bit; subbit >= 0; subbit--) { subbit &= bit; //if(subbit==bit)continue; //全体集合bit自身をスキップ //if(subbit==0)continue; //空集合をスキップ debug(subbit, bit & ~subbit); // 部分集合、およびその残り } */ //[lib]warshall_floyd.cpp //計算量:O(N^3) void warshall_floyd(vector> &d) { ll N=d.size(); for (ll k=0; k>N>>M>>K; vector a(N); rep(i, N) cin >> a[i]; /* vector> g(N); rep(i,M){ ll a, b, c; cin >> a >> b >> c; a--, b--; g[a].emplace_back(a, b, c); g[b].emplace_back(b, a, c); } vector> dist; vector> prev; bool negative_cycle = johnsons_algorithm(g, dist, prev); */ vector> dist(N, vector(N, INF)); for (ll i = 0; i < (ll)dist.size(); i++) dist[i][i] = 0; for(ll i=0; i> from >> to >> cost; from--;to--; dist[from][to] = cost; dist[to][from] = cost;//無向グラフの場合は両方に辺を張る } warshall_floyd(dist); vector dp(1 << N, INF); dp[0] = 0; rep(bit, 1LL << N) { rep(i,N){ if (isup(bit, i)) continue; ll nextbit = up(bit, i); if(bit==0){ chmin(dp[nextbit], a[i]); continue; } ll t = INF; rep(j,N){ if (isdown(bit, j)) continue; ll s = dist[i][j]; chmin(t, s); } chmin(dp[nextbit], a[i]+t+dp[bit]); } } ll ans = INF; rep(bit,1LL<> Q; while(Q--)solve(); solve(); return 0; }