#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) */ struct SegTree { n: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } /* * Online monotone minima dp. For example, monge dp can be efficiently computed * by online_dc. * Verified by: https://yukicoder.me/problems/no/705 * submission: https://yukicoder.me/submissions/566775 */ const INF: i64 = 1 << 60; // Complexity: O(n log m + m) where n = r - l, m = b - a. fn monotone_minima(l: usize, r: usize, a: usize, b: usize, lat: &mut [i64], realizer: &mut [usize], cost_fun: &F) where F: Fn(usize, usize) -> i64 { let n = r - l; let m = b - a; if n == 0 || m == 0 { return; } let mid = (a + b) / 2; let mut mi = (INF, n); for i in l..r { let cost = cost_fun(i, mid); mi = std::cmp::min(mi, (cost, i)); } let idx = mi.1; assert!(l <= idx && idx < r); lat[mid] = std::cmp::min(lat[mid], mi.0); realizer[mid] = idx; monotone_minima(l, idx + 1, a, mid, lat, realizer, cost_fun); monotone_minima(idx, r, mid + 1, b, lat, realizer, cost_fun); } trait Bisect { fn lower_bound(&self, val: &T) -> usize; fn upper_bound(&self, val: &T) -> usize; } impl Bisect for [T] { fn lower_bound(&self, val: &T) -> usize { let mut pass = self.len() + 1; let mut fail = 0; while pass - fail > 1 { let mid = (pass + fail) / 2; if &self[mid - 1] >= val { pass = mid; } else { fail = mid; } } pass - 1 } fn upper_bound(&self, val: &T) -> usize { let mut pass = self.len() + 1; let mut fail = 0; while pass - fail > 1 { let mid = (pass + fail) / 2; if &self[mid - 1] > val { pass = mid; } else { fail = mid; } } pass - 1 } } trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); } impl Change for T { fn chmax(&mut self, x: T) { if *self < x { *self = x; } } fn chmin(&mut self, x: T) { if *self > x { *self = x; } } } fn calc(a: &[i64]) -> Vec { let n = a.len(); let mut acc = vec![0; n + 1]; for i in 0..n { acc[i + 1] = acc[i] + a[i]; } let mut dp = vec![INF; n + 1]; let mut realizer = vec![0; n + 1]; monotone_minima(0, n, 0, n + 1, &mut dp, &mut realizer, &|i, j| { if i < j { let ii = i as i64; let jj = j as i64; ii * ii - acc[i] + jj * jj + acc[j] - 2 * ii * jj } else { INF / 2 } }); // eprintln!("{:?}", dp); // eprintln!("realizer = {:?}", realizer); // Find min {dp[j] | i in [realizer[j], j)} for each i let mut st = SegTree::new(n + 1, min, INF); for i in 0..n + 1 { st.update(i, dp[i]); } let mut ret = vec![0; n]; for i in 0..n { let idx = realizer.upper_bound(&i); let tmp = st.query(i + 1, idx); ret[i] = tmp; } ret } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { n: usize, a: [i64; n], } let dp1 = calc(&a); let mut a = a; a.reverse(); let mut dp2 = calc(&a); dp2.reverse(); for i in 0..n { puts!("{}\n", min(dp1[i], dp2[i])); } }