fn main() { let mut io = IO::new(); input!{ from io, n: usize, q: usize, l: [i64; n], } let mut seg = SegmentTreeBeats::::from( &l.into_iter().map(Rucms::new).collect() ); for _ in 0..q { match io.scan::() { 1 => { let (l, r, e) = io.scan::<(Usize1, usize, i64)>(); seg.update(l..r, Op::Update(e)); } 2 => { let (l, r, e) = io.scan::<(Usize1, usize, i64)>(); seg.update(l..r, Op::Gcd(e)); } 3 => { let (l, r) = io.scan::<(Usize1, usize)>(); io.println(seg.fold(l..r).max) } 4 => { let (l, r) = io.scan::<(Usize1, usize)>(); io.println(seg.fold(l..r).sum) } _ => unreachable!() } } } pub fn gcd(mut a: i64, mut b: i64) -> i64 { while b != 0 { a %= b; std::mem::swap(&mut a, &mut b); } a } pub fn lcm(a: i64, b: i64) -> i64 { if a == 0 && b == 0 { 0 } else { (a / gcd(a, b)).saturating_mul(b) } } #[derive(Clone, PartialEq)] struct Rucms { max: i64, lcm: i64, sum: i64, size: i64, fail: bool } impl Rucms { fn new(val: i64) -> Self { Self { max: val, lcm: val, sum: val, size: 1, fail: false } } } impl Beats for Rucms { fn is_failed(&self) -> bool { self.fail } } #[derive(Clone, PartialEq)] enum Op { Gcd(i64), Update(i64), None } struct RangeUpdateChgcdMaxSum; impl Operation for RangeUpdateChgcdMaxSum { type Val = Rucms; type Eff = Op; const ZERO_VAL: Self::Val = Rucms{ max: 0, lcm: 1, sum: 0, size: 0, fail: false }; const ZERO_EFF: Self::Eff = Op::None; fn op_val(left: &Self::Val, right: &Self::Val) -> Self::Val { Self::Val { max: left.max.max(right.max), lcm: lcm(left.lcm, right.lcm), sum: left.sum + right.sum, size: left.size + right.size, fail: left.fail | right.fail } } fn op_eff(left: &Self::Eff, right: &Self::Eff) -> Self::Eff { match (left, right) { (left, Op::None) => left.clone(), (Op::None, right) => right.clone(), (_, Op::Update(_)) => right.clone(), (Op::Gcd(a), Op::Gcd(b)) => Op::Gcd(gcd(*a, *b)), (Op::Update(a), Op::Gcd(b)) => Op::Update(gcd(*a, *b)) } } fn effect(val: &Self::Val, eff: &Self::Eff) -> Self::Val { let mut res = val.clone(); match *eff { Op::Gcd(g) => { if val.size == 1 { res = Rucms::new(gcd(g, val.max)); } else if g % val.lcm != 0 { res.fail = true; } } Op::Update(u) => { res.max = u; res.lcm = u; res.sum = u * res.size; } Op::None => () }; res } } // ------------ Segment Tree Beats start ------------ pub trait Operation { type Val: Clone + PartialEq + Beats; type Eff: Clone + PartialEq; const ZERO_VAL: Self::Val; const ZERO_EFF: Self::Eff; fn op_val(left: &Self::Val, right: &Self::Val) -> Self::Val; fn op_eff(left: &Self::Eff, right: &Self::Eff) -> Self::Eff; fn effect(val: &Self::Val, eff: &Self::Eff) -> Self::Val; fn multiply(eff: &Self::Eff, _times: u32) -> Self::Eff { eff.clone() } } pub trait Beats { fn is_failed(&self) -> bool; } #[derive(Clone)] struct Node { val: T, lazy: E, } impl Node { fn new(val: T, lazy: E) -> Self { Self { val, lazy } } } pub struct SegmentTreeBeats { node: Box<[Node]>, size: usize, dep: u32, } impl SegmentTreeBeats { pub fn new(n: usize) -> Self { let size = n.next_power_of_two(); let dep = size.trailing_zeros() + 1; let node = vec![Node::new(O::ZERO_VAL, O::ZERO_EFF); size << 1] .into_boxed_slice(); Self { node, size, dep } } #[inline] fn degree(&self, i: usize) -> u32 { 1 << (i.leading_zeros() + self.dep - 64) } fn effect(&mut self, i: usize, e: &O::Eff) { self.node[i].val = O::effect(&self.node[i].val, &O::multiply(e, self.degree(i))); if i <= self.size { self.node[i].lazy = O::op_eff(&self.node[i].lazy, e); if self.node[i].val.is_failed() { self.push(i); self.node[i].val = O::op_val(&self.node[i << 1].val, &self.node[(i << 1) + 1].val); } } } fn push(&mut self, i: usize) { let e = std::mem::replace(&mut self.node[i].lazy, O::ZERO_EFF); if e != O::ZERO_EFF && i <= self.size { self.effect(i << 1, &e); self.effect((i << 1) + 1, &e); } } fn infuse(&mut self, mut i: usize) { i >>= i.trailing_zeros(); while i > 1 { i >>= 1; self.node[i].val = O::op_val(&self.node[i << 1].val, &self.node[(i << 1) + 1].val); } } fn infiltrate(&mut self, i: usize) { if i < self.size << 1 { let d = i.trailing_zeros(); for j in (d..self.dep).rev() { self.push(i >> j); } } } pub fn update>(&mut self, rng: Rng, e: O::Eff) { let rng = bounds_within(rng, self.size); let mut l = rng.start + self.size; let mut r = rng.end + self.size; self.infiltrate(l); self.infiltrate(r); while l < r { if l & 1 == 1 { self.effect(l, &e); l += 1; } if r & 1 == 1 { r -= 1; self.effect(r, &e); } l >>= 1; r >>= 1; } self.infuse(rng.start + self.size); self.infuse(rng.end + self.size); } pub fn fold>(&mut self, rng: Rng) -> O::Val { let rng = bounds_within(rng, self.size); let mut l = rng.start + self.size; let mut r = rng.end + self.size; self.infiltrate(l); self.infiltrate(r); let mut lx = O::ZERO_VAL; let mut rx = O::ZERO_VAL; while l < r { if l & 1 == 1 { lx = O::op_val(&lx, &self.node[l].val); l += 1; } if r & 1 == 1 { r -= 1; rx = O::op_val(&self.node[r].val, &rx); } l >>= 1; r >>= 1; } O::op_val(&lx, &rx) } } impl From<&Vec> for SegmentTreeBeats { fn from(arr: &Vec) -> Self { let size = arr.len().next_power_of_two(); let dep = size.trailing_zeros() + 1; let mut node = vec![Node::new(O::ZERO_VAL, O::ZERO_EFF); size << 1]; for i in 0..arr.len() { node[i + size].val = arr[i].clone(); } for i in (1..size).rev() { node[i].val = O::op_val(&node[i << 1].val, &node[(i << 1) + 1].val); } Self { node: node.into_boxed_slice(), size, dep } } } // ------------ Segment Tree Beats end ------------ pub fn bounds_within(r: R, len: usize) -> std::ops::Range where R: std::ops::RangeBounds { use std::ops::Bound; let end = match r.end_bound() { Bound::Included(&e) => e + 1, Bound::Excluded(&e) => e, Bound::Unbounded => len, } .min(len); let start = match r.start_bound() { Bound::Included(&s) => s, Bound::Excluded(&s) => s + 1, Bound::Unbounded => 0, } .min(end); start..end } // ------------ io module start ------------ use std::io::{stdout, BufWriter, Read, StdoutLock, Write}; pub struct IO { iter: std::str::SplitAsciiWhitespace<'static>, buf: BufWriter>, } impl IO { pub fn new() -> Self { let mut input = String::new(); std::io::stdin().read_to_string(&mut input).unwrap(); let input = Box::leak(input.into_boxed_str()); let out = Box::new(stdout()); IO { iter: input.split_ascii_whitespace(), buf: BufWriter::new(Box::leak(out).lock()), } } fn scan_str(&mut self) -> &'static str { self.iter.next().unwrap() } pub fn scan(&mut self) -> ::Output { ::scan(self) } pub fn scan_vec(&mut self, n: usize) -> Vec<::Output> { (0..n).map(|_| self.scan::()).collect() } pub fn print(&mut self, x: T) { ::print(self, x); } pub fn println(&mut self, x: T) { self.print(x); self.print("\n"); } pub fn iterln>(&mut self, mut iter: I, delim: &str) { if let Some(v) = iter.next() { self.print(v); for v in iter { self.print(delim); self.print(v); } } self.print("\n"); } pub fn flush(&mut self) { self.buf.flush().unwrap(); } } impl Default for IO { fn default() -> Self { Self::new() } } pub trait Scan { type Output; fn scan(io: &mut IO) -> Self::Output; } macro_rules! impl_scan { ($($t:tt),*) => { $( impl Scan for $t { type Output = Self; fn scan(s: &mut IO) -> Self::Output { s.scan_str().parse().unwrap() } } )* }; } impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64); impl Scan for char { type Output = char; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().next().unwrap() } } pub enum Bytes {} impl Scan for Bytes { type Output = &'static [u8]; fn scan(s: &mut IO) -> Self::Output { s.scan_str().as_bytes() } } pub enum Chars {} impl Scan for Chars { type Output = Vec; fn scan(s: &mut IO) -> Self::Output { s.scan_str().chars().collect() } } pub enum Usize1 {} impl Scan for Usize1 { type Output = usize; fn scan(s: &mut IO) -> Self::Output { s.scan::().wrapping_sub(1) } } impl Scan for (T, U) { type Output = (T::Output, U::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s)) } } impl Scan for (T, U, V) { type Output = (T::Output, U::Output, V::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s)) } } impl Scan for (T, U, V, W) { type Output = (T::Output, U::Output, V::Output, W::Output); fn scan(s: &mut IO) -> Self::Output { (T::scan(s), U::scan(s), V::scan(s), W::scan(s)) } } pub trait Print { fn print(w: &mut IO, x: Self); } macro_rules! impl_print_int { ($($t:ty),*) => { $( impl Print for $t { fn print(w: &mut IO, x: Self) { w.buf.write_all(x.to_string().as_bytes()).unwrap(); } } )* }; } impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64); impl Print for u8 { fn print(w: &mut IO, x: Self) { w.buf.write_all(&[x]).unwrap(); } } impl Print for &[u8] { fn print(w: &mut IO, x: Self) { w.buf.write_all(x).unwrap(); } } impl Print for &str { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl Print for String { fn print(w: &mut IO, x: Self) { w.print(x.as_bytes()); } } impl Print for (T, U) { fn print(w: &mut IO, (x, y): Self) { w.print(x); w.print(" "); w.print(y); } } impl Print for (T, U, V) { fn print(w: &mut IO, (x, y, z): Self) { w.print(x); w.print(" "); w.print(y); w.print(" "); w.print(z); } } mod neboccoio_macro { #[macro_export] macro_rules! input { (@start $io:tt @read @rest) => {}; (@start $io:tt @read @rest, $($rest: tt)*) => { input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @rest mut $($rest:tt)*) => { input!(@start $io @read @mut [mut] @rest $($rest)*) }; (@start $io:tt @read @rest $($rest:tt)*) => { input!(@start $io @read @mut [] @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => { let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::>>(); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => { let $($mut)* $var = $io.scan_vec::<$kind>($len); input!(@start $io @read @rest $($rest)*) }; (@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => { let $($mut)* $var = $io.scan::<$kind>(); input!(@start $io @read @rest $($rest)*) }; (from $io:tt $($rest:tt)*) => { input!(@start $io @read @rest $($rest)*) }; } } // ------------ io module end ------------