class Factorial(): def __init__(self, mod=998244353): self.mod = mod self._factorial = [1] self._size = 1 self._factorial_inv = [1] self._size_inv = 1 def __call__(self, n): '''n! % mod ''' return self.fact(n) def fact(self, n): '''n! % mod ''' if n >= self.mod: return 0 self.make(n) return self._factorial[n] def fact_inv(self, n): '''n!^-1 % mod ''' if n >= self.mod: raise ValueError('Modinv is not exist! arg={}'.format(n)) self.make_inv(n) return self._factorial_inv[n] def comb(self, n, r): ''' nCr % mod ''' if r > n: return 0 t = self.fact_inv(n-r)*self.fact_inv(r) % self.mod return self(n)*t % self.mod def comb_with_repetition(self, n, r): ''' nHr % mod ''' t = self.fact_inv(n-1)*self.fact_inv(r) % self.mod return self(n+r-1)*t % self.mod def perm(self, n, r): ''' nPr % mod ''' if r > n: return 0 return self(n)*self.fact_inv(n-r) % self.mod @staticmethod def xgcd(a, b): ''' return (g, x, y) such that a*x + b*y = g = gcd(a, b) ''' x0, x1, y0, y1 = 0, 1, 1, 0 while a != 0: (q, a), b = divmod(b, a), a y0, y1 = y1, y0 - q * y1 x0, x1 = x1, x0 - q * x1 return b, x0, y0 def modinv(self, n): g, x, _ = self.xgcd(n, self.mod) if g != 1: raise ValueError('Modinv is not exist! arg={}'.format(n)) return x % self.mod def make(self, n): if n >= self.mod: n = self.mod if self._size < n+1: for i in range(self._size, n+1): self._factorial.append(self._factorial[i-1]*i % self.mod) self._size = n+1 def make_inv(self, n): if n >= self.mod: n = self.mod self.make(n) if self._size_inv < n+1: for i in range(self._size_inv, n+1): self._factorial_inv.append(self.modinv(self._factorial[i])) self._size_inv = n+1 N,M = map(int,input().split()) A = list(map(int,input().split())) dp = [[False,M] for _ in range(M+1)] dp[0] = [True,0] f = Factorial() for i in range(N): for j in range(M-A[i]+1): if dp[j][0]: dp[j+A[i]][0] = True dp[j+A[i]][1] = min(dp[j+A[i]][1],dp[j][1]+1) ans = 1 for i in range(1,M+1): if dp[i][0]: ans += f.comb(M-dp[i][1],i-dp[i][1]) ans %= 998244353 print(ans)