#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl ::std::fmt::Debug for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt

; // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft(f: &mut [R], zeta: R, one: R) where R: Copy + Add + Sub + Mul { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add + Sub + Mul { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // Depends on: fft.rs, MInt.rs // Primitive root defaults to 3 (for 998244353); for other moduli change the value of it. fn conv(a: Vec, b: Vec) -> Vec { let n = a.len() - 1; let m = b.len() - 1; let mut p = 1; while p <= n + m { p *= 2; } let mut f = vec![MInt::new(0); p]; let mut g = vec![MInt::new(0); p]; for i in 0..n + 1 { f[i] = a[i]; } for i in 0..m + 1 { g[i] = b[i]; } let fac = MInt::new(p as i64).inv(); let zeta = MInt::new(3).pow((MOD - 1) / p as i64); fft::fft(&mut f, zeta, 1.into()); fft::fft(&mut g, zeta, 1.into()); for i in 0..p { f[i] *= g[i] * fac; } fft::inv_fft(&mut f, zeta.inv(), 1.into()); f[..n + m + 1].to_vec() } // Computes f^{-1} mod x^{f.len()}. // Reference: https://codeforces.com/blog/entry/56422 // Complexity: O(n log n) // Verified by: https://judge.yosupo.jp/submission/3219 // Depends on: MInt.rs, fft.rs fn fps_inv( f: &[mod_int::ModInt

], gen: mod_int::ModInt

) -> Vec> { let n = f.len(); assert!(n.is_power_of_two()); assert_eq!(f[0], 1.into()); let mut sz = 1; let mut r = vec![mod_int::ModInt::new(0); n]; let mut tmp_f = vec![mod_int::ModInt::new(0); n]; let mut tmp_r = vec![mod_int::ModInt::new(0); n]; r[0] = 1.into(); // Adopts the technique used in https://judge.yosupo.jp/submission/3153 while sz < n { let zeta = gen.pow((P::m() - 1) / sz as i64 / 2); tmp_f[..2 * sz].copy_from_slice(&f[..2 * sz]); tmp_r[..2 * sz].copy_from_slice(&r[..2 * sz]); fft::fft(&mut tmp_r[..2 * sz], zeta, 1.into()); fft::fft(&mut tmp_f[..2 * sz], zeta, 1.into()); let fac = mod_int::ModInt::new(2 * sz as i64).inv().pow(2); for i in 0..2 * sz { tmp_f[i] *= tmp_r[i]; } fft::inv_fft(&mut tmp_f[..2 * sz], zeta.inv(), 1.into()); for v in &mut tmp_f[..sz] { *v = 0.into(); } fft::fft(&mut tmp_f[..2 * sz], zeta, 1.into()); for i in 0..2 * sz { tmp_f[i] = -tmp_f[i] * tmp_r[i] * fac; } fft::inv_fft(&mut tmp_f[..2 * sz], zeta.inv(), 1.into()); r[sz..2 * sz].copy_from_slice(&tmp_f[sz..2 * sz]); sz *= 2; } r } fn dfs(polys: &[Vec]) -> (Vec, Vec) { let len = polys.len(); if len == 0 { return (vec![MInt::new(0)], vec![MInt::new(1)]); } if len == 1 { return (vec![MInt::new(1)], polys[0].to_vec()); } let mid = len / 2; let (n0, d0) = dfs(&polys[..mid]); let (n1, d1) = dfs(&polys[mid..]); let mut n = conv(n0, d1.clone()); { let sub = conv(n1, d0.clone()); let to = max(n.len(), sub.len()); n.resize(to, 0.into()); for i in 0..sub.len() { n[i] += sub[i]; } } let d = conv(d0, d1); (n, d) } // Tags: binary-splitting, fps fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} #[allow(unused)] macro_rules! putvec { ($v:expr) => { for i in 0..$v.len() { puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "}); } } } input! { n: usize, m: usize, a: [i64; n], } let mut polys = vec![vec![MInt::new(1), MInt::new(0)]; n]; for i in 0..n { polys[i][1] = -MInt::new(a[i]); } let (num, mut den) = dfs(&polys); let mut p = 1; while p < max(m + 1, den.len()) { p *= 2; } den.resize(p, 0.into()); let invden = fps_inv(&den, 3.into()); let res = conv(num, invden); putvec!(res[1..m + 1]); }