class Combination: def __init__(self, n_max, MOD=10 ** 9 + 7): """ PREP = O(n_max + log(MOD)) :param self.fac[n]: n! :param self.facinv[n]: 1/n! """ self.mod = MOD f = 1 self.fac = fac = [f] for i in range(1, n_max+1): f = f * i % MOD fac.append(f) f = pow(f, MOD - 2, MOD) self.facinv = facinv = [f] for i in range(n_max, 0, -1): f = f * i % MOD facinv.append(f) facinv.reverse() def __call__(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod def F(self, n): """ n! """ return self.fac[n] def C(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod def P(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] * self.facinv[n-r] % self.mod def H(self, n, r): """ (箱区別:〇 ボール区別:× 空箱:〇) 重複組み合わせ nHm """ if n==r==0: return 1 if not 0 <= r <= n+r-1: return 0 return self.fac[n+r-1] * self.facinv[r] % self.mod * self.facinv[n-1] % self.mod def rising_factorial(self, n, r): """ 上昇階乗冪 n * (n+1) * ... * (n+r-1) """ return self.fac[n+r-1] * self.facinv[n-1] % self.mod def stirling_first(self, n, k): """ 第 1 種スターリング数 lru_cache を使うと O(nk) # k 要素を n 個の巡回列に分割する場合の数 """ if n == k: return 1 if k == 0: return 0 return (self.stirling_first(n-1, k-1) + (n-1)*self.stirling_first(n-1, k)) % self.mod def stirling_second(self, n, k): """ 第 2 種スターリング数 O(k + log(n)) """ if n == k: return 1 # n==k==0 のときのため return self.facinv[k] * sum((-1)**(k-m) * self.C(k, m) * pow(m, n, self.mod) for m in range(1, k+1)) % self.mod def grouping(self, n, k): """ (箱区別:× ボール区別:〇 空箱:×) 組み分け mSn。第二種スターリング数と添え字を交換したもの """ if n == k: return 1 # n==k==0 のときのため return self.facinv[n] * sum((-1)**(n-m) * self.C(n, m) * pow(m, k, self.mod) for m in range(1, n+1)) % self.mod def sum_groupiing(self, n, k): """ (箱区別:× ボール区別:〇 空箱:〇) 重複順列 Σ_(l=1,...,n) mSl """ return sum(self.grouping(n,m)for m in range(1, k+1)) % self.mod def balls_and_boxes(self, n, k): """ (箱区別:〇 ボール区別:〇 空箱:×) 組み分け mSn * n! O(k + log(n)) """ return sum((-1)**(n-m) * self.C(n, m) * pow(m, k, self.mod) for m in range(1, n+1)) % self.mod def bernoulli(self, n): """ ベルヌーイ数。べき乗和を求める際に必要(Faulhaber の定理。 lru_cache を使うと O(n**2 * log(mod)) """ if n == 0: return 1 if n % 2 and n >= 3: return 0 # 高速化 return (- pow(n+1, self.mod-2, self.mod) * sum(self.C(n+1, k) * self.bernoulli(k) % self.mod for k in range(n))) % self.mod def faulhaber(self, k, n): """ べき乗和 0^k + 1^k + ... + (n-1)^k bernoulli に lru_cache を使うと O(k**2 * log(mod)) bernoulli が計算済みなら O(k * log(mod)) """ return pow(k+1, self.mod-2, self.mod) * sum(self.C(k+1, j) * self.bernoulli(j) % self.mod * pow(n, k-j+1, self.mod) % self.mod for j in range(k+1)) % self.mod def lah(self, n, k): """ n 要素を k 個の空でない順序付き集合に分割する場合の数 O(1) """ return self.C(n-1, k-1) * self.fac[n] % self.mod * self.facinv[k] % self.mod def bell(self, n, k): """ n 要素を k グループ以下に分割する場合の数 O(k**2 + k*log(mod)) """ return sum(self.stirling_second(n, j) for j in range(1, k+1)) % self.mod def montmort(self, n): """ 順列を置換した数列のうち、ai != i となるような数列の数 """ return sum( (-1)**(k%2) * self.fac[n]*self.facinv[k] for k in range(2,n+1)) % self.mod class Combination2: """ without mod """ def __init__(self, n_max): f = 1 self.fac = fac = [f] for i in range(1, n_max+1): f = f * i fac.append(f) def __call__(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] // self.fac[r] // self.fac[n-r] def F(self, n): """ n! """ return self.fac[n] def C(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] // self.fac[r] // self.fac[n-r] def P(self, n, r): if not 0 <= r <= n: return 0 return self.fac[n] // self.fac[n-r] def H(self, n, r): """ (箱区別:〇 ボール区別:× 空箱:〇) 重複組み合わせ nHm """ if n==r==0: return 1 if not 0 <= r <= n+r-1: return 0 return self.fac[n+r-1] // self.fac[r] // self.fac[n-1] def is_prime_MR(n): if n in [2, 7, 61]: return True if n < 2 or n % 2 == 0: return False d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23] if n < 1<<61 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return False t <<= 1 return True def prime_counter(n): i = 2 ret = {} mrFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i%2 if i == 101 and n >= 2**20: while n > 1: if is_prime_MR(n): ret[n], n = 1, 1 else: mrFlg = 1 j = _find_factor_rho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if mrFlg > 0: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(n): """ O(x^1/4) O(10**9)の整数10**4個の約数列挙が可能 """ primes=prime_counter(n) P=set([1]) for key, value in primes.items(): Q=[] for p in P: for k in range(value+1): Q.append(p*pow(key,k)) P|=set(Q) P = sorted(list(P)) # 速度が欲しい時は消す return P def _find_factor_rho(n): m = 1 << n.bit_length() // 8 + 1 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r-k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x-ys), n) if g < n: if is_prime_MR(g): return g elif is_prime_MR(n//g): return n//g ############################################################################################## import sys from math import gcd input = sys.stdin.readline MOD = 10**9+7 N,K=map(int, input().split()) C = Combination(100000, MOD=MOD) res=1 for p,cnt in prime_counter(N).items(): res*=C.H(K+1,cnt) res%=MOD print(res)