#include using namespace std; #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=2e9+1; const ll INF=4e18; const ll dy[8]={-1,0,1,0,1,1,-1,-1}; const ll dx[8]={0,-1,0,1,1,-1,1,-1}; template inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); } template inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); } // fast Walsh–Hadamard transform template std::vector fast_hadamard_transform(std::vector vec) { using hadamard_size_type = typename std::vector::size_type; auto vec_size = vec.size(); // check vec_size is power of 2 assert(((vec_size - 1)&vec_size) == 0); for(hadamard_size_type i = 1; i < vec_size; i = i << 1) { auto mask = ~i; for(auto j = i; j < vec_size; j = (j+1)|i) { T a = vec[j&mask]; T &b = vec[j]; vec[j&mask] += b; b = a - b; } } return vec; } // inverse fast Walsh–Hadamard transform template auto inv_fast_hadamard_transform (VecType &&vec) { auto vec_size = vec.size(); auto &&ret = fast_hadamard_transform(std::forward(vec)); for(auto &i : ret) i /= vec_size; return ret; } // bitwise xor convolution // using fast-Walsh–Hadamard-transform template std::vector xor_convolution (const std::vector &a, const std::vector &b) { using xorconv_size_type = typename std::vector::size_type; assert(a.size() == b.size()); auto vec_size = a.size(); std::vector &&transa = fast_hadamard_transform(a), &&transb = fast_hadamard_transform(b); for(xorconv_size_type i = 0; i < vec_size; i++) { transa[i] *= transb[i]; } return inv_fast_hadamard_transform(transa); } const int mod = MOD; const int max_n = 200005; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } bool operator==(const mint &p) const { return x == p.x; } bool operator!=(const mint &p) const { return x != p.x; } // for prime mod mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} using vm=vector; using vvm=vector; vm comp(ll n){ vm va(1<<10); ll now=0;va[0]=1; rep(i,n){ ll a;cin >> a;now^=a;va[now]+=1; } vm ca=fast_hadamard_transform(va); mint invtwo=mint(1)/2; rep(i,1<<10){ ca[i]*=ca[i]; ca[i]-=n+1; ca[i]*=invtwo; } return ca; } int main(){ ll n,m,k;cin >> n >> m >> k; auto p=comp(n); auto q=comp(m); rep(i,1<<10)p[i]*=q[i]; auto r=inv_fast_hadamard_transform(p); cout << r[k] << endl; }