#include using ll = long long; using std::cin; using std::cout; using std::endl; std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count()); template inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T &a, T b) { if (a > b) { a = b; return 1; } return 0; } const int inf = (int)1e9 + 7; const long long INF = 1LL << 60; template struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; std::swap(a -= t * b, b); std::swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt(t); return (is); } static int get_mod() { return mod; } }; constexpr int mod = (int)1e9 + 7; using mint = ModInt; template struct Matrix { std::vector> A; Matrix() {} Matrix(int n, int m) : A(n, std::vector(m, 0)) {} Matrix(int n) : A(n, std::vector(n, 0)){}; int height() const { return (A.size()); } int width() const { return (A[0].size()); } inline const std::vector &operator[](int k) const { return (A.at(k)); } inline std::vector &operator[](int k) { return (A.at(k)); } static Matrix I(int n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { int n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { int n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { int n = height(), m = B.width(), p = width(); assert(p == B.height()); std::vector> C(n, std::vector(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend std::ostream &operator<<(std::ostream &os, Matrix &p) { int n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } }; void solve([[maybe_unused]] int CASE) { int C, N, M; cin >> C >> N >> M; Matrix mat(4, 4); const mint cinv = mint(1) / mint(C); mat[0][0] = cinv; mat[0][1] = 1; mat[1][3] = cinv; mat[2][0] = cinv * (C - 1); mat[2][3] = cinv * (C - 2); mat[3][2] = 1; mat[3][3] = cinv; mat ^= N; Matrix ini(4, 1); ini[0][0] = 1; mat *= ini; mint exist = mat[0][0]; mint ret = mint(1) - mint(mint(1) - exist).pow(M); cout << ret << "\n"; } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); int kkt = 1; // cin >> kkt; for (int jupi = 1; jupi <= kkt; jupi++) solve(jupi); return 0; }