#include <bits/stdc++.h>
#include <atcoder/modint>
using namespace std;
using namespace atcoder;
//using mint = modint998244353;
using mint = modint1000000007;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using tlll = tuple<ll, ll, ll>;
constexpr ll INF = 1LL << 60;
template<class T> bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;}
template<class T> bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;}
ll safemod(ll A, ll M) {return (A % M + M) % M;}
ll divfloor(ll A, ll B) {if (B < 0) {return divfloor(-A, -B);} return (A - safemod(A, B)) / B;}
ll divceil(ll A, ll B) {if (B < 0) {return divceil(-A, -B);} return divfloor(A + B - 1, B);}
#define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false) 

using mmat = vector<vector<mint>>;
mmat mmatrixprod(mmat &A1, mmat &A2)
{
  ll n1 = A1.size(), n2 = A2.size();
  ll m1 = A1.front().size(), m2 = A2.front().size();

  if (n2 != m1)
  {
    cerr << "Error: matrix product is not defined\n";
    abort();
  }

  mmat ret(n1, vector<mint>(m2, 0));
  for (ll i = 0; i < n1; i++)
  {
    for (ll j = 0; j < m2; j++)
    {
      for (ll k = 0; k < n2; k++)
      {
        ret[i][j] += A1[i][k] * A2[k][j];
      }
    }
  }

  return ret;
}
mmat mmatrixpow(mmat &A1, ll k)
{
  ll n = A1.size();
  mmat A10(n, vector<mint>(n, 0));
  for (ll i = 0; i < n; i++)
  {
    for (ll j = 0; j < n; j++)
    {
      A10[i][j] = A1[i][j];
    }
  }
  
  mmat ret(n, vector<mint>(n, 0));
  for (ll i = 0; i < n; i++)
  {
    ret[i][i] = 1;
  }

  while (k > 0)
  {
    if ((k & 1) != 0)
      ret = mmatrixprod(ret, A10);
    A10 = mmatrixprod(A10, A10);
    k >>= 1;
  }

  return ret;
}

int main()
{
  const mint inv3 = mint(1) / 3;
  mmat A = {{inv3, 0, 0, 0, inv3, inv3},
            {0, inv3, 0, inv3, 0, inv3},
            {0, 0, inv3, inv3, inv3, 0},
            {1, 0, 0, 0, 0, 0},
            {0, 1, 0, 0, 0, 0},
            {0, 0, 1, 0, 0, 0}};

  ll T;
  cin >> T;
  for (ll t = 0; t < T; t++)
  {
    ll N;
    cin >> N;

    mmat pwA = mmatrixpow(A, N - 1);
    mmat x = {{inv3}, {0}, {0}, {1}, {0}, {0}};
    mmat y = mmatrixprod(pwA, x);
    mint ans = y.at(0).at(0);
    cout << ans.val() << '\n';
  }
}