// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt

; // Depends on MInt.rs fn fact_init(w: usize) -> (Vec, Vec) { let mut fac = vec![MInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1..w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0..w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } /// Binary Indexed Tree (Fenwick Tree). Holds an array of type T. /// T is a commutative monoid. Indices are 1 .. n. /// Verified by yukicoder No.404 (http://yukicoder.me/submissions/155373) struct BIT { n: usize, ary: Vec, e: T, } impl> BIT { fn new(n: usize, e: T) -> Self { let n = n.next_power_of_two(); BIT { n: n, ary: vec![e.clone(); n + 1], e: e } } /** * gets the sum in [1 .. idx] * @param idx * @return sum */ fn accum(&self, mut idx: usize) -> T { let mut sum = self.e.clone(); while idx > 0 { sum += self.ary[idx].clone(); idx &= idx - 1; } sum } /** * performs data[idx] += val; */ fn add(&mut self, mut idx: usize, val: U) where T: std::ops::AddAssign { assert!(idx > 0); let n = self.n; while idx <= n { self.ary[idx] += val.clone(); idx += idx & idx.wrapping_neg(); } } /// Make sure that 1 <= idx <= n. #[allow(unused)] fn single(&self, idx: usize) -> T where T: std::ops::Sub { self.accum(idx) - self.accum(idx - 1) } } fn main() { input! { n: usize, a: [i64; n], } let (fac, invfac) = fact_init(n + 1); let mut coo = a.clone(); coo.sort(); coo.dedup(); let m = coo.len(); let mut tot = MInt::new(0); let mut f = vec![0; m]; for &a in &a { let a = coo.binary_search(&a).unwrap(); f[a] += 1; } let mut acc = vec![0; m + 1]; for i in 0..m { acc[i + 1] = acc[i] + f[i]; } let ninv2 = MInt::new(n as i64 * n as i64 * 2).inv(); // inter let mut stairs = MInt::new(0); let mut sq = MInt::new(0); for i in 1..n + 1 { let i = i as i64; stairs += i; sq += i * i; } for i in 0..m { let count = acc[i] as i64 * f[i]; tot += (stairs * stairs - sq) * ninv2 * count; } // self-contained let mut tmp = MInt::new(0); for i in 1..n + 1 { tmp += i as i64 * (i as i64 - 1); } tmp *= MInt::new(n as i64 * (n - 1) as i64).inv(); let mut bit = BIT::new(m, 0); for i in 0..n { let a = coo.binary_search(&a[i]).unwrap(); tot += tmp * (i as i64 - bit.accum(a + 1)); bit.add(a + 1, 1); } for i in 1..n + 1 { tot *= fac[n] * invfac[i] * invfac[n - i]; } println!("{}", tot); }