import typing class Matrix: def __init__(self, n: int, m: int, mat: typing.Union[list, None] = None, mod: int = 998244353) -> None: self.n = n self.m = m self.mat = [[0] * self.m for i in range(self.n)] self.mod = mod if mat: for i in range(self.n): self.mat[i] = mat[i] def is_square(self) -> None: return self.n == self.m def __getitem__(self, key: int) -> int: if isinstance(key, slice): return self.mat[key] else: assert key >= 0 return self.mat[key] def id(n: int): res = Matrix(n, n) for i in range(n): res[i][i] = 1 return res def __len__(self) -> int: return len(self.mat) def __str__(self) -> str: return "\n".join(" ".join(map(str, self[i])) for i in range(self.n)) def times(self, k: int): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = k * self[i][j] % self.mod return Matrix(self.n, self.m, res) def __pos__(self): return self def __neg__(self): return self.times(-1) def __add__(self, other): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = (self[i][j] + other[i][j]) % self.mod return Matrix(self.n, self.m, res) def __sub__(self, other): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = (self[i][j] - other[i][j]) % self.mod return Matrix(self.n, self.m, res) def __mul__(self, other): if other.__class__ == Matrix: res = [[0] * other.m for i in range(self.n)] for i in range(self.n): for k in range(self.m): for j in range(other.m): res[i][j] += self[i][k] * other[k][j] res[i][j] %= self.mod return Matrix(self.n, other.m, res) else: return self.times(other) def __rmul__(self, other): return self.times(other) def __pow__(self, k): tmp = Matrix(self.n, self.n, self.mat) res = Matrix.id(self.n) while k: if k & 1: res *= tmp tmp *= tmp k >>= 1 return res def determinant(self): res = 1 tmp = Matrix(self.n, self.n, self.mat) for j in range(self.n): if tmp[j][j] == 0: for i in range(j + 1, self.n): if tmp[i][j] != 0: break else: return 0 tmp.mat[j], tmp.mat[i] = tmp.mat[i], tmp.mat[j] res *= -1 inv = invmod(tmp[j][j], self.mod) for i in range(j + 1, self.n): c = -inv * tmp[i][j] % self.mod for k in range(self.n): tmp[i][k] += c * tmp[j][k] tmp[i][k] %= self.mod for i in range(self.n): res *= tmp[i][i] res %= self.mod return res # 拡張Euclidの互除法 def extgcd(a: int, b: int, d: int = 0) -> typing.Tuple[int, int, int]: g = a if b == 0: x, y = 1, 0 else: x, y, g = extgcd(b, a % b) x, y = y, x - a // b * y return x, y, g # mod p における逆元 def invmod(a: int, p: int) -> int: x, y, g = extgcd(a, p) x %= p return x mod = 10 ** 9 + 7 c, n, m = map(int, input().split()) a = Matrix(4, 4, [[1, 0, 0, 1], [0, 1, c-1, c-2], [c, 0, 0, 0], [0, c, 0, 0]], mod) a **= n a *= Matrix(4, 1, [[1], [0], [c], [0]], mod) ans = (1 - pow(1 - a[2][0] * pow(invmod(c, mod), n + 1, mod), m, mod)) % mod print(ans)