#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::Read; #[allow(dead_code)] fn getline() -> String { let mut ret = String::new(); std::io::stdin().read_line(&mut ret).ok().unwrap(); ret } fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get() -> T { get_word().parse().ok().unwrap() } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) * yukicoder No. 833 (https://yukicoder.me/submissions/703521) */ struct SegTree { n: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Clone { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e.clone(); 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1].clone(), self.dat[2 * k + 2].clone()); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ #[allow(unused)] pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e.clone(); let mut right = self.e.clone(); a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a].clone()); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1].clone(), right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } fn solve() { let n: usize = get(); let m: usize = get(); let q: usize = get(); let mut st = SegTree::new(m, |a, b| { let mut c = vec![0; n]; for i in 0..n { c[i] = b[a[i]]; } c }, (0..n).collect::>()); for _ in 0..q { let ty: i32 = get(); if ty == 1 { let d = get::() - 1; let p: Vec<_> = (0..n).map(|_| get::() - 1).collect(); st.update(d, p); } else if ty == 2 { let s: usize = get(); let k = st.query(0, s); let mut v = vec![0; n]; for i in 0..n { v[k[i]] = i; } for i in 0..n { print!("{}{}", v[i] + 1, if i + 1 == n { "\n" } else { " " }); } } else { let l = get::() - 1; let r: usize = get(); let k = st.query(l, r); let mut ans = 0; for i in 0..n { ans += (i as i32 - k[i] as i32).abs(); } println!("{}", ans); } } } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }