// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // Tags: linear-algebra, gaussian-elimination fn main() { input! { n: usize, m: usize, by: [([usize1], i64); m], } let mut basis = vec![]; for (b, mut y) in by { let mut c = 0i64; for &b in &b { c |= 1 << b; } for &(p, q) in &basis { if (c ^ p) < c { c ^= p; y ^= q; } } if c == 0 && y != 0 { println!("-1"); return; } if c != 0 { basis.push((c, y)); } } basis.sort(); let mut x = vec![0; n]; for (p, mut q) in basis { let mut hi = 0; for i in 0..n { if (p & 1 << i) != 0 { hi = i; } } for i in 0..hi { if (p & 1 << i) != 0 { q ^= x[i]; } } x[hi] = q; } for i in 0..n { println!("{}", x[i]); } }