#include typedef long long ll; typedef unsigned long long ull; #define FOR(i,a,b) for(int (i)=(a);i<(b);i++) #define REP(i,n) FOR(i,0,n) #define RANGE(vec) (vec).begin(),(vec).end() using namespace std; template struct Pt { T x, y; Pt(T x0, T y0) : x(x0), y(y0) {} Pt() :x(0),y(0) {} const Pt operator+(const Pt &other) const { return Pt(x+other.x, y+other.y); } const Pt operator-(const Pt &other) const { return Pt(x-other.x, y-other.y); } Pt &operator+=(const Pt &other) { x += other.x; y += other.y; return *this; } Pt &operator-=(const Pt &other) { x -= other.x; y -= other.y; return *this; } Pt operator*(double r) const { return Pt(x*r, y*r); } bool operator<(const Pt &other) const { return (x < other.x)? true : ((x==other.x)? (y < other.y) : false); } bool operator<=(const Pt &other) const { return (*this == other)? true : (*this < other); } bool operator>(const Pt &other) const { return (other < *this); } bool operator>=(const Pt &other) const { return (other <= *this); } bool operator==(const Pt &other) const { return (x==other.x && y==other.y); } bool operator!=(const Pt &other) const { return !(operator==(other)); } double norm(void) const { return hypot(x, y); } // class method static double cross(const Pt &a, const Pt &b) { return ((double)a.y*b.x - (double)a.x*b.y); } static double dot(const Pt &a, const Pt &b) { return (double)a.x*b.x+(double)a.y*b.y; } friend std::ostream &operator<<(std::ostream &os, const Pt &p) { os <<"("< 0) return 1; // counter clockwise if (area < 0) return -1; // clockwise return 0; // on line } }; template Pt operator*(double r, const Pt &p) { return p*r; } typedef Pt Ptd; class WriteStars { public: void solve(void) { vector verts(5); REP(i,5) { int x,y; cin>>x>>y; verts[i] = Ptd(x,y); } sort(RANGE(verts)); // O(5!*5*5) do { vector> edges; REP(i,5) edges.push_back(make_pair(verts[i], verts[(i+1)%5])); bool ok = true; REP(i,5) { auto e = edges[i]; Ptd p1,p2; tie(p1,p2) = e; set left; set right; REP(j,5) { if (i == j) continue; Ptd q1,q2; tie(q1,q2) = edges[j]; if (p1 == q1 || p1 == q2 || p2 == q1 || p2 == q2) continue; // 線分 e と交差するもののうち端点を left/right に振り分ける // 2 // 0 --------- 1 // 3 4 // のように 線分01 と交差する線分の端点が 01 のどちらかに振り分けられていて // その個数が 1 個であればよい if ( !Ptd::intersect(p1,p2,q1,q2) ) { ok = false; break; } } } if (ok) { cout<<"YES"<solve(); delete obj; return 0; } #endif