use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get() -> T { get_word().parse().ok().unwrap() } // https://ei1333.github.io/luzhiled/snippets/tree/heavy-light-decomposition.html // Verified by: NUPC2017 H // https://atcoder.jp/contests/njpc2017/submissions/23535017 struct HLDecomp { euler: Vec, head: Vec, rev: Vec, par: Vec, } impl HLDecomp { fn dfs_sz(v: usize, p: usize, g: &mut [Vec], sz: &mut [usize], par: &mut [usize]) { par[v] = p; sz[v] = 1; if g[v].get(0) == Some(&p) { let last = g[v].len() - 1; g[v].swap(0, last); } for i in 0..g[v].len() { let to = g[v][i]; if to == p { continue; } Self::dfs_sz(to, v, g, sz, par); sz[v] += sz[to]; if sz[g[v][0]] < sz[to] { g[v].swap(0, i); } } } fn dfs_euler(v: usize, par: usize, g: &[Vec], euler: &mut [usize], count: &mut usize, head: &mut [usize], rev: &mut [usize]) { euler[v] = *count; *count += 1; rev[euler[v]] = v; for &to in &g[v] { if to == par { continue; } head[to] = if g[v][0] == to { head[v] } else { to }; Self::dfs_euler(to, v, g, euler, count, head, rev); } } pub fn new(g: &[Vec]) -> Self { let mut g = g.to_vec(); let n = g.len(); let mut sz = vec![0; n]; let mut par = vec![0; n]; Self::dfs_sz(0, n, &mut g, &mut sz, &mut par); let mut euler = vec![0; n]; let mut count = 0; let mut head = vec![0; n]; let mut rev = vec![0; n]; Self::dfs_euler(0, n, &g, &mut euler, &mut count, &mut head, &mut rev); HLDecomp { euler: euler, head: head, rev: rev, par: par, } } #[allow(unused)] pub fn get_id(&self, v: usize) -> usize { self.euler[v] } #[allow(unused)] pub fn from_id(&self, id: usize) -> usize { self.rev[id] } // M: commutative // M must not panic. #[allow(unused)] pub fn query T, M: Fn(T, T) -> T>(&self, mut u: usize, mut v: usize, mut f: F, mut m: M, e: T, edge: bool) -> T { let mut ans = e; self.divide(u, v, |l, r| { let ptr: *mut T = &mut ans; unsafe { let val = f(l, r); let ans = std::ptr::read(ptr); std::ptr::write(ptr, m(ans, val)) } }, edge); ans } pub fn divide(&self, mut u: usize, mut v: usize, mut f: F, edge: bool) { let euler = &self.euler; let head = &self.head; loop { if euler[u] > euler[v] { std::mem::swap(&mut u, &mut v); } if head[u] == head[v] { break; } f(euler[head[v]], euler[v] + 1); v = self.par[head[v]]; } f(euler[u] + if edge { 1 } else { 0 }, euler[v] + 1); } } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) * yukicoder No. 833 (https://yukicoder.me/submissions/703521) */ struct SegTree { n: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ #[allow(unused)] pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } // Port from https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp #[allow(unused)] fn max_right bool>( &self, mut l: usize, f: &F, ) -> usize { assert!(f(self.e)); if l == self.n { return self.n; } l += self.n - 1; let mut sm = self.e; loop { while l % 2 == 1 { l = (l - 1) / 2; } if !f((self.op)(sm, self.dat[l])) { while l < self.n - 1 { l = 2 * l + 1; let val = (self.op)(sm, self.dat[l]); if f(val) { sm = val; l += 1; } } return l + 1 - self.n; } sm = (self.op)(sm, self.dat[l]); l += 1; if (l + 1).is_power_of_two() { break; } } self.n } // Port from https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp #[allow(unused)] fn min_left bool>( &self, mut r: usize, f: &F, ) -> usize { if !f(self.e) { return r + 1; } if r == 0 { return 0; } r += self.n - 1; let mut sm = self.e; loop { r -= 1; while r > 0 && r % 2 == 0 { r = (r - 1) / 2; } if !f((self.op)(self.dat[r], sm)) { while r < self.n - 1 { r = 2 * r + 2; let val = (self.op)(self.dat[r], sm); if f(val) { sm = val; r -= 1; } } return r + 2 - self.n; } sm = (self.op)(self.dat[r], sm); if (r + 1).is_power_of_two() { break; } } 0 } } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt

; fn mul(x: [[MInt; 2]; 2], y: [[MInt; 2]; 2]) -> [[MInt; 2]; 2] { let mut z = [[MInt::new(0); 2]; 2]; for i in 0..2 { for j in 0..2 { for k in 0..2 { z[i][k] += x[i][j] * y[j][k]; } } } z } fn solve() { let n: usize = get(); let mut g = vec![vec![]; n]; let mut edge = vec![]; for _ in 0..n - 1 { let a: usize = get(); let b: usize = get(); g[a].push(b); g[b].push(a); edge.push((a, b)); } let mut st = SegTree::new(n, mul, [[MInt::new(1), MInt::new(0)], [MInt::new(0), MInt::new(1)]]); let hld = HLDecomp::new(&g); let q: usize = get(); for _ in 0..q { let ty: String = get_word(); if ty == "x" { let i: usize = get(); let (a, b) = edge[i]; let mut f = [[MInt::new(0); 2]; 2]; for j in 0..2 { for k in 0..2 { let x: i64 = get(); f[j][k] = x.into(); } } let mut eidx = n; hld.divide(a, b, |l, r| if l < r { eidx = l }, true); st.update(eidx, f); } else { let a: usize = get(); let b: usize = get(); let mut tmp = st.e; hld.divide(a, b, |l, r| tmp = mul(st.query(l, r), tmp), true); for i in 0..4 { print!("{}{}", tmp[i / 2][i % 2], if i == 3 { "\n" } else { " " }); } } } } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }