#include #define REP_(i, a_, b_, a, b, ...) \ for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using i64 = long long; #include #include #include using Mint = atcoder::modint998244353; std::ostream &operator<<(std::ostream &os, const Mint &m) { return os << m.val(); } template inline bool chmax(T &a, U b) { return a < b and ((a = std::move(b)), true); } template inline bool chmin(T &a, U b) { return a > b and ((a = std::move(b)), true); } template inline int ssize(const T &a) { return (int) a.size(); } template inline std::ostream &print_one(const T &x, char endc) { if constexpr (std::is_same_v) { return std::cout << (x ? "Yes" : "No") << endc; } else { return std::cout << x << endc; } } template inline std::ostream &print(const T &x) { return print_one(x, '\n'); } template std::ostream &print(const T &head, Ts... tail) { return print_one(head, ' '), print(tail...); } inline std::ostream &print() { return std::cout << '\n'; } template std::ostream &print_seq(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream &os = std::cout) { auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) os << sep; os << *it; } return os << ends; } template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type { }; template::value && !std::is_same::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return print_seq(a, ", ", "", (os << "{")) << "}"; } struct VersatileInput { template operator T() const { T x; std::cin >> x; return x; } struct Sized { std::size_t n; template operator T() const { T x(n); for (auto &e: x) std::cin >> e; return x; } }; Sized operator()(std::size_t n) const { return {n}; } } const in; inline void check(bool cond, const char *message = "!ERROR!") { if (not cond) throw std::runtime_error(message); } #ifdef MY_DEBUG #include "debug_dump.hpp" #else #define DUMP(...) #define cerr if(false)std::cerr #endif using namespace std; // T: modint template struct NTTMult { static_assert(atcoder::internal::is_modint::value, "Requires ACL modint."); static_assert(T::mod() == 998244353, "Requires an NTT-friendly mod."); using value_type = T; static constexpr int dmax() { return DMAX; } static std::vector multiply(const std::vector &x, const std::vector &y) { std::vector res = atcoder::convolution(x, y); if (int(res.size()) > DMAX + 1) res.resize(DMAX + 1); // shrink return res; } static std::vector invert(const std::vector &x) { assert(x[0].val() != 0); // must be invertible const int n = x.size(); std::vector res(n); res[0] = x[0].inv(); for (int i = 1; i < n; i <<= 1) { const int m = std::min(2 * i, n); std::vector f(2 * i), g(2 * i); for (int j = 0; j < m; ++j) f[j] = x[j]; for (int j = 0; j < i; ++j) g[j] = res[j]; f = atcoder::convolution(f, g); f.resize(2 * i); for (int j = 0; j < i; ++j) f[j] = 0; f = atcoder::convolution(f, g); for (int j = i; j < m; ++j) res[j] = -f[j]; } return res; } }; // Formal Power Series (dense format). template struct DenseFPS { using T = typename Mult::value_type; static constexpr int dmax() { return Mult::dmax(); } // Coefficients of terms from x^0 to x^DMAX. std::vector coeff_; DenseFPS() : coeff_(1, 0) {} // = 0 * x^0 explicit DenseFPS(std::vector c) : coeff_(std::move(c)) { while (size() > dmax() + 1) coeff_.pop_back(); assert(size() > 0); } DenseFPS(std::initializer_list init) : coeff_(init.begin(), init.end()) { while (size() > dmax() + 1) coeff_.pop_back(); assert(size() > 0); } DenseFPS(const DenseFPS &other) : coeff_(other.coeff_) {} DenseFPS(DenseFPS &&other) : coeff_(std::move(other.coeff_)) {} DenseFPS &operator=(const DenseFPS &other) { coeff_ = other.coeff_; return *this; } DenseFPS &operator=(DenseFPS &&other) { coeff_ = std::move(other.coeff_); return *this; } // size <= dmax + 1 inline int size() const { return static_cast(coeff_.size()); } // Returns the coefficient of x^k. inline T operator[](int k) const { return (k >= size()) ? 0 : coeff_[k]; } DenseFPS &operator+=(const T &scalar) { coeff_[0] += scalar; return *this; } friend DenseFPS operator+(const DenseFPS &x, const T &scalar) { return DenseFPS(x) += scalar; } DenseFPS &operator+=(const DenseFPS &other) { if (size() < other.size()) coeff_.resize(other.size()); for (int i = 0; i < other.size(); ++i) coeff_[i] += other[i]; return *this; } friend DenseFPS operator+(const DenseFPS &x, const DenseFPS &y) { return DenseFPS(x) += y; } DenseFPS &operator-=(const DenseFPS &other) { if (size() < other.size()) coeff_.resize(other.size()); for (int i = 0; i < other.size(); ++i) coeff_[i] -= other[i]; return *this; } friend DenseFPS operator-(const DenseFPS &x, const DenseFPS &y) { return DenseFPS(x) -= y; } DenseFPS operator-() const { return *this * -1; } DenseFPS &operator*=(const T &scalar) { for (auto &x: coeff_) x *= scalar; return *this; } friend DenseFPS operator*(const DenseFPS &x, const T &scalar) { return DenseFPS(x) *= scalar; } friend DenseFPS operator*(const T &scalar, const DenseFPS &y) { return DenseFPS{scalar} *= y; } DenseFPS &operator*=(const DenseFPS &other) { return *this = DenseFPS(Mult::multiply(std::move(this->coeff_), other.coeff_)); } friend DenseFPS operator*(const DenseFPS &x, const DenseFPS &y) { return DenseFPS(Mult::multiply(x.coeff_, y.coeff_)); } DenseFPS &operator/=(const T &scalar) { for (auto &x: coeff_) x /= scalar; return *this; } friend DenseFPS operator/(const DenseFPS &x, const T &scalar) { return DenseFPS(x) /= scalar; } friend DenseFPS operator/(const T &scalar, const DenseFPS &y) { return DenseFPS{scalar} /= y; } DenseFPS &operator/=(const DenseFPS &other) { return *this *= DenseFPS(Mult::invert(other.coeff_)); } friend DenseFPS operator/(const DenseFPS &x, const DenseFPS &y) { return x * DenseFPS(Mult::invert(y.coeff_)); } DenseFPS pow(i64 t) const { assert(t >= 0); DenseFPS res = {1}, base = *this; while (t) { if (t & 1) res *= base; base *= base; t >>= 1; } return res; } // Multiplies by (1 + c * x^k). void multiply2_inplace(int k, int c) { assert(k > 0); if (size() <= dmax()) { coeff_.resize(min(size() + k, dmax() + 1), 0); } for (int i = size() - 1; i >= k; --i) { coeff_[i] += coeff_[i - k] * c; } } // Multiplies by (1 + c * x^k). DenseFPS multiply2(int k, int c) const { DenseFPS res = *this; res.multiply2_inplace(k, c); return res; } // Divides by (1 + c * x^k). void divide2_inplace(int k, int c) { assert(k > 0); for (int i = k; i < size(); ++i) { coeff_[i] -= coeff_[i - k] * c; } } // Divides by (1 + c * x^k). DenseFPS divide2(int k, int c) const { DenseFPS res = *this; res.divide2_inplace(k, c); return res; } // Multiplies by x^k. void shift_inplace(int k) { if (k > 0) { if (size() <= dmax()) { coeff_.resize(min(size() + k, dmax() + 1), 0); } for (int i = size() - 1; i >= k; --i) { coeff_[i] = coeff_[i - k]; } for (int i = k - 1; i >= 0; --i) { coeff_[i] = 0; } } else if (k < 0) { k *= -1; for (int i = k; i < size(); ++i) { coeff_[i - k] = coeff_[i]; } for (int i = size() - k; i < size(); ++i) { // If coefficients of degrees higher than dmax() were truncated // beforehand, you lose the information. Ensure dmax() is big enough. coeff_[i] = 0; } } } // Multiplies by x^k. DenseFPS shift(int k) const { DenseFPS res = *this; res.shift_inplace(k); return res; } T eval(const T &a) const { T res = 0, x = 1; for (auto c: coeff_) { res += c * x; x *= a; } return res; } }; // Formal Power Series (sparse format). template struct SparseFPS { int size_; std::vector degree_; std::vector coeff_; SparseFPS() : size_(0) {} explicit SparseFPS(std::vector> terms) : size_(terms.size()), degree_(size_), coeff_(size_) { // Sort by degree. std::sort(terms.begin(), terms.end(), [](const auto &x, const auto &y) { return x.first < y.first; }); for (int i = 0; i < size_; ++i) { auto[d, c] = terms[i]; assert(d >= 0); degree_[i] = d; coeff_[i] = c; } } SparseFPS(std::initializer_list> terms) : SparseFPS(std::vector>(terms.begin(), terms.end())) {} inline int size() const { return size_; } inline const T &coeff(int i) const { return coeff_[i]; } inline int degree(int i) const { return degree_[i]; } int max_degree() const { return (size_ == 0) ? 0 : degree_.back(); } void emplace_back(int d, T c) { assert(d >= 0); if (not degree_.empty()) { assert(d > degree_.back()); } degree_.push_back(std::move(d)); coeff_.push_back(std::move(c)); ++size_; } // Returns the coefficient of x^d. T operator[](int d) const { auto it = std::lower_bound(degree_.begin(), degree_.end(), d); if (it == degree_.end() or *it != d) return (T) (0); int j = std::distance(degree_.begin(), it); return coeff_[j]; } SparseFPS &operator+=(const T &scalar) { for (auto &x: coeff_) x += scalar; return *this; } friend SparseFPS operator+(const SparseFPS &x, const T &scalar) { SparseFPS res = x; res += scalar; return res; } SparseFPS &operator+=(const SparseFPS &other) { *this = this->add(other); return *this; } friend SparseFPS operator+(const SparseFPS &x, const SparseFPS &y) { return x.add(y); } SparseFPS &operator*=(const T &scalar) { for (auto &x: coeff_) x *= scalar; return *this; } friend SparseFPS operator*(const SparseFPS &x, const T &scalar) { SparseFPS res = x; res *= scalar; return res; } SparseFPS &operator-=(const SparseFPS &other) { *this = this->add(other * -1); return *this; } friend SparseFPS operator-(const SparseFPS &x, const SparseFPS &y) { return x.add(y * -1); } private: SparseFPS add(const SparseFPS &other) const { SparseFPS res; int j = 0; // two pointers (i, j) for (int i = 0; i < size(); ++i) { const int deg = this->degree(i); for (; j < other.size() and other.degree(j) < deg; ++j) { res.emplace_back(other.degree(j), other.coeff(j)); } T c = this->coeff(i); if (j < other.size() and other.degree(j) == deg) { c += other.coeff(j); ++j; } if (c != 0) { res.emplace_back(deg, c); } } for (; j < other.size(); ++j) { res.emplace_back(other.degree(j), other.coeff(j)); } return res; } }; // Polynomial addition (dense + sparse). template FPS &operator+=(FPS &x, const SparseFPS &y) { for (int i = 0; i < y.size(); ++i) { if (y.degree(i) > FPS::dmax()) break; // ignore x.coeff_[y.degree(i)] += y.coeff(i); } return x; } template FPS operator+(const FPS &x, const SparseFPS &y) { auto res = x; res += y; return res; } template FPS operator+(const SparseFPS &x, const FPS &y) { return y + x; // commutative } // Polynomial multiplication (dense * sparse). template FPS &operator*=(FPS &x, const SparseFPS &y) { if (y.size() == 0) { return x *= 0; } const int yd_max = y.degree(y.size() - 1); const int xd_max = x.size() - 1; const int n = std::min(xd_max + yd_max, FPS::dmax()) + 1; if (x.size() < n) x.coeff_.resize(n); T c0 = 0; int j0 = 0; if (y.degree(0) == 0) { c0 = y.coeff(0); j0 = 1; } for (int xd = n - 1; xd >= 0; --xd) { x.coeff_[xd] *= c0; for (int j = j0; j < y.size(); ++j) { int yd = y.degree(j); if (yd > xd) break; x.coeff_[xd] += x[xd - yd] * y.coeff(j); } } return x; } template FPS operator*(const FPS &x, const SparseFPS &y) { auto res = x; res *= y; return res; } template FPS operator*(const SparseFPS &x, const FPS &y) { return y * x; // commutative } constexpr int D = 200005; using DF = DenseFPS>; using SF = SparseFPS; int main() { ios_base::sync_with_stdio(false), cin.tie(nullptr); int n = in, Q = in; vector a = in(n); vector b = in(Q); deque fs; REP(i, n) { fs.push_back({Mint(a[i] - 1), 1}); } while (fs.size() > 1) { auto g = fs[0] * fs[1]; fs.push_back(move(g)); fs.pop_front(); fs.pop_front(); } auto &f = fs.front(); REP(i, Q) { print(f[b[i]]); } }