#include #define REP_(i, a_, b_, a, b, ...) \ for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using i64 = long long; #include #include #include using Mint = atcoder::modint998244353; std::ostream &operator<<(std::ostream &os, const Mint &m) { return os << m.val(); } template inline bool chmax(T &a, U b) { return a < b and ((a = std::move(b)), true); } template inline bool chmin(T &a, U b) { return a > b and ((a = std::move(b)), true); } template inline int ssize(const T &a) { return (int) a.size(); } template inline std::ostream &print_one(const T &x, char endc) { if constexpr (std::is_same_v) { return std::cout << (x ? "Yes" : "No") << endc; } else { return std::cout << x << endc; } } template inline std::ostream &print(const T &x) { return print_one(x, '\n'); } template std::ostream &print(const T &head, Ts... tail) { return print_one(head, ' '), print(tail...); } inline std::ostream &print() { return std::cout << '\n'; } template std::ostream &print_seq(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream &os = std::cout) { auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) os << sep; os << *it; } return os << ends; } template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type { }; template::value && !std::is_same::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return print_seq(a, ", ", "", (os << "{")) << "}"; } struct VersatileInput { template operator T() const { T x; std::cin >> x; return x; } struct Sized { std::size_t n; template operator T() const { T x(n); for (auto &e: x) std::cin >> e; return x; } }; Sized operator()(std::size_t n) const { return {n}; } } const in; inline void check(bool cond, const char *message = "!ERROR!") { if (not cond) throw std::runtime_error(message); } #ifdef MY_DEBUG #include "debug_dump.hpp" #else #define DUMP(...) #define cerr if(false)std::cerr #endif using namespace std; // T: modint template struct NTTMult { static_assert(atcoder::internal::is_modint::value, "Requires ACL modint."); static_assert(T::mod() == 998244353, "Requires an NTT-friendly mod."); using value_type = T; static constexpr int dmax() { return DMAX; } static std::vector multiply(const std::vector &x, const std::vector &y) { std::vector res = atcoder::convolution(x, y); if (int(res.size()) > DMAX + 1) res.resize(DMAX + 1); // shrink return res; } static std::vector invert(const std::vector &x) { assert(x[0].val() != 0); // must be invertible const int n = x.size(); std::vector res(n); res[0] = x[0].inv(); for (int i = 1; i < n; i <<= 1) { const int m = std::min(2 * i, n); std::vector f(2 * i), g(2 * i); for (int j = 0; j < m; ++j) f[j] = x[j]; for (int j = 0; j < i; ++j) g[j] = res[j]; f = atcoder::convolution(f, g); f.resize(2 * i); for (int j = 0; j < i; ++j) f[j] = 0; f = atcoder::convolution(f, g); for (int j = i; j < m; ++j) res[j] = -f[j]; } return res; } }; // Formal Power Series (dense format). template struct DenseFPS { using T = typename Mult::value_type; static constexpr int dmax() { return Mult::dmax(); } // Coefficients of terms from x^0 to x^DMAX. std::vector coeff_; DenseFPS() : coeff_(1, 0) {} // = 0 * x^0 explicit DenseFPS(std::vector c) : coeff_(std::move(c)) { while (size() > dmax() + 1) coeff_.pop_back(); assert(size() > 0); } DenseFPS(std::initializer_list init) : coeff_(init.begin(), init.end()) { while (size() > dmax() + 1) coeff_.pop_back(); assert(size() > 0); } DenseFPS(const DenseFPS &other) : coeff_(other.coeff_) {} DenseFPS(DenseFPS &&other) : coeff_(std::move(other.coeff_)) {} DenseFPS &operator=(const DenseFPS &other) { coeff_ = other.coeff_; return *this; } DenseFPS &operator=(DenseFPS &&other) { coeff_ = std::move(other.coeff_); return *this; } // size <= dmax + 1 inline int size() const { return static_cast(coeff_.size()); } // Returns the coefficient of x^k. inline T operator[](int k) const { return (k >= size()) ? 0 : coeff_[k]; } DenseFPS &operator*=(const T &scalar) { for (auto &x: coeff_) x *= scalar; return *this; } friend DenseFPS operator*(const DenseFPS &x, const T &scalar) { return DenseFPS(x) *= scalar; } friend DenseFPS operator*(const T &scalar, const DenseFPS &y) { return DenseFPS{scalar} *= y; } DenseFPS &operator*=(const DenseFPS &other) { return *this = DenseFPS(Mult::multiply(std::move(this->coeff_), other.coeff_)); } friend DenseFPS operator*(const DenseFPS &x, const DenseFPS &y) { return DenseFPS(Mult::multiply(x.coeff_, y.coeff_)); } }; int BMAX = 200000; using DF = DenseFPS>; int main() { ios_base::sync_with_stdio(false), cin.tie(nullptr); int n = in, Q = in; vector a = in(n); vector b = in(Q); BMAX = *max_element(ALL(b)); deque fs; REP(i, n) { fs.push_back({Mint(a[i] - 1), 1}); } while (fs.size() > 1) { fs.push_back(fs[0] * fs[1]); fs.pop_front(); fs.pop_front(); } auto &f = fs.front(); REP(i, Q) { print(f[b[i]]); } }