#include using namespace std; #define rep(i, n) for (int i = 0; i < n; i++) #define rep2(i, x, n) for (int i = x; i <= n; i++) #define rep3(i, x, n) for (int i = x; i >= n; i--) #define each(e, v) for (auto &e : v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int(a); return is; } }; using mint = Mod_Int; template struct Lazy_Segment_Tree { using F = function; using G = function; using H = function; int n, height; vector seg; vector lazy; const F f; const G g; const H h; const Monoid e1; const Operator_Monoid e2; // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p // g(f(a,b),p) = f(g(a,p),g(b,p)) // g(g(a,p),q) = g(a,h(p,q)) Lazy_Segment_Tree(const vector &v, const F &f, const G &g, const H &h, const Monoid &e1, const Operator_Monoid &e2) : f(f), g(g), h(h), e1(e1), e2(e2) { int m = v.size(); n = 1, height = 0; while (n < m) n <<= 1, height++; seg.assign(2 * n, e1), lazy.assign(2 * n, e2); copy(begin(v), end(v), seg.begin() + n); for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } Lazy_Segment_Tree(int m, const Monoid &x, const F &f, const G &g, const H &h, const Monoid &e1, const Operator_Monoid &e2) : f(f), g(g), h(h), e1(e1), e2(e2) { n = 1, height = 0; while (n < m) n <<= 1, height++; seg.assign(2 * n, e1), lazy.assign(2 * n, e2); vector v(m, x); copy(begin(v), end(v), seg.begin() + n); for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } inline Monoid reflect(int i) const { return (lazy[i] == e2 ? seg[i] : g(seg[i], lazy[i])); } inline void recalc(int i) { while (i >>= 1) seg[i] = f(reflect(2 * i), reflect(2 * i + 1)); } inline void eval(int i) { if (i < n && lazy[i] != e2) { lazy[2 * i] = h(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]); seg[i] = reflect(i), lazy[i] = e2; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void apply(int l, int r, const Operator_Monoid &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += n, r += n; thrust(l), thrust(r - 1); int a = l, b = r; while (l < r) { if (l & 1) lazy[l] = h(lazy[l], x), l++; if (r & 1) r--, lazy[r] = h(lazy[r], x); l >>= 1, r >>= 1; } recalc(a), recalc(b - 1); } Monoid query(int l, int r) { l = max(l, 0), r = min(r, n); if (l >= r) return e1; l += n, r += n; thrust(l), thrust(r - 1); Monoid L = e1, R = e1; while (l < r) { if (l & 1) L = f(L, reflect(l++)); if (r & 1) R = f(reflect(--r), R); l >>= 1, r >>= 1; } return f(L, R); } Monoid operator[](int i) { return query(i, i + 1); } template int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, bool type) { while (i < n) { eval(i); Monoid nxt = type ? f(reflect(2 * i + type), M) : f(M, reflect(2 * i + type)); if (check(nxt, x)) { i = 2 * i + type; } else { M = nxt, i = 2 * i + (type ^ 1); } } return i - n; } template int find_first(int l, const C &check, const Monoid &x) { // check((区間[l,r]での演算結果), x)を満たす最小のr Monoid L = e1; int a = l + n, b = n + n; thrust(a); while (a < b) { if (a & 1) { Monoid nxt = f(L, reflect(a)); if (check(nxt, x)) return find_subtree(a, check, x, L, false); L = nxt, a++; } a >>= 1, b >>= 1; } return n; } template int find_last(int r, const C &check, const Monoid &x) { // check((区間[l,r)での演算結果), x)を満たす最大のl Monoid R = e1; int a = n, b = r + n; thrust(b - 1); while (a < b) { if (b & 1 || a == 1) { Monoid nxt = f(reflect(--b), R); if (check(nxt, x)) return find_subtree(b, check, x, R, true); R = nxt; } a >>= 1, b >>= 1; } return -1; } }; int main() { int N; cin >> N; vector A(N); rep(i, N) cin >> A[i]; vector v = id_sort(A); auto f = [](mint a, mint b) { return a + b; }; auto g = [](mint a, mint b) { return a * b; }; auto h = [](mint a, mint b) { return a * b; }; Lazy_Segment_Tree seg1(N, 1, f, g, h, 0, 1), seg2(N, 1, f, g, h, 0, 1); vector ipw(N + 1, 1); mint tw = mint(2).inverse(); rep(i, N) ipw[i + 1] = ipw[i] * tw; mint ans = 0; rep(i, N) { int e = v[i]; ans += seg1.query(e, N) * seg2.query(0, e + 1) * ipw[i] * A[e]; seg1.apply(e, N, 2), seg2.apply(0, e + 1, 2); } cout << ans << '\n'; }