#include #define REP_(i, a_, b_, a, b, ...) \ for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using Int = long long; using Real = long double; template inline bool chmax(T &a, U b) { return a < b and ((a = std::move(b)), true); } template inline bool chmin(T &a, U b) { return a > b and ((a = std::move(b)), true); } template inline int ssize(const T &a) { return (int) a.size(); } inline void check(bool cond, const char *message = "!ERROR!") { if (not cond) { std::cout.flush(), std::cerr.flush(); throw std::runtime_error(message); } } template inline std::ostream &print_one(const T &x, char endc) { if constexpr (std::is_same_v) { return std::cout << (x ? "Yes" : "No") << endc; } else { return std::cout << x << endc; } } template inline std::ostream &print(const T &x) { return print_one(x, '\n'); } template std::ostream &print(const T &head, Ts... tail) { return print_one(head, ' '), print(tail...); } inline std::ostream &print() { return std::cout << '\n'; } template std::ostream &print_seq(const Container &a, const char *sep = " ", const char *ends = "\n", std::ostream &os = std::cout) { auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) os << sep; os << *it; } return os << ends; } template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type { }; template::value && !std::is_same::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return print_seq(a, ", ", "", (os << "{")) << "}"; } struct CastInput { template operator T() const { T x; std::cin >> x; return x; } struct Sized { std::size_t n; template operator T() const { T x(n); for (auto &e: x) std::cin >> e; return x; } }; Sized operator()(std::size_t n) const { return {n}; } } const in; #ifdef MY_DEBUG #include "debug_dump.hpp" #include "backward.hpp" backward::SignalHandling kSignalHandling; #else #define DUMP(...) #define cerr if(false)std::cerr #endif using namespace std; struct Edge { int to; }; using Graph = vector>; struct Task { using NV = tuple; // Node Value using EV = NV; // Edge Value vector is_d; explicit Task(vector is_d) : is_d(move(is_d)) {} EV id() const { return {false, 0, 0}; } NV add_node(const EV &ev, int v) const { auto[has_d, roundtrip, oneway] = ev; if (not has_d) { return {is_d[v], 0, 0}; } return ev; } EV add_edge(const NV &nv, const Edge &e) const { auto[has_d, roundtrip, oneway] = nv; if (not has_d) return nv; return {true, roundtrip + 2, oneway + 1}; } EV merge(const EV &ev1, const EV &ev2) const { auto[has_d1, roundtrip1, oneway1] = ev1; auto[has_d2, roundtrip2, oneway2] = ev2; if (not has_d1) return ev2; if (not has_d2) return ev1; return {true, roundtrip1 + roundtrip2, min(roundtrip1 + oneway2, roundtrip2 + oneway1)}; } }; template class Rerooter { private: using NV = typename Rerootable::NV; using EV = typename Rerootable::EV; Rerootable task; int n; // number of nodes std::vector> g; // graph (tree) std::vector sub; // values for each subtree rooted at i std::vector full; // values for each entire tree rooted at i int base_root; // base root node where we start DFS public: explicit Rerooter(Rerootable task, std::vector> g, int r = 0) : task(move(task)), n((int) g.size()), g(move(g)), sub(n), full(n), base_root(r) {} const std::vector &run() { pull_up(base_root, -1); push_down(base_root, -1, std::nullopt); return full; } private: NV pull_up(int v, int par) { EV res = task.id(); for (auto &e: g[v]) { int u = e.to; if (u == par) continue; auto sub = pull_up(u, v); res = task.merge(res, task.add_edge(std::move(sub), e)); } return (sub[v] = task.add_node(res, v)); } void push_down(int v, int par, std::optional upper_sub) { int m = g[v].size(); std::vector cuml(m + 1, task.id()), cumr(m + 1, task.id()); for (int i = 0; i < m; ++i) { auto &e = g[v][i]; int u = e.to; if (u == par) { assert(upper_sub.has_value()); cuml[i + 1] = task.merge(cuml[i], task.add_edge(*upper_sub, e)); } else { cuml[i + 1] = task.merge(cuml[i], task.add_edge(sub[u], e)); } } for (int i = m - 1; i >= 0; --i) { auto &e = g[v][i]; int u = e.to; if (u == par) { cumr[i] = task.merge(task.add_edge(*upper_sub, e), cumr[i + 1]); } else { cumr[i] = task.merge(task.add_edge(sub[u], e), cumr[i + 1]); } } full[v] = task.add_node(cuml[m], v); for (int i = 0; i < m; ++i) { auto &e = g[v][i]; int u = e.to; if (u == par) continue; std::optional next_upper_sub{ task.add_node(task.merge(cuml[i], cumr[i + 1]), v)}; push_down(u, v, std::move(next_upper_sub)); } } }; auto solve() { int n = in, K = in; Graph g(n); REP(i, n - 1) { int u = in, v = in; --u, --v; g[u].push_back({v}); g[v].push_back({u}); } vector D(n); REP(i, K) { int d = in; --d; D[d] = true; } Task task(D); Rerooter<> rerooter(task, g); auto res = rerooter.run(); REP(v, n) { print(get<2>(res[v])); } } int main() { ios_base::sync_with_stdio(false), cin.tie(nullptr); solve(); }