// ---------- begin Rerooting ---------- pub trait RerootingOperator { type Value: Clone; type Edge: Clone; fn init(&mut self, v: usize) -> Self::Value; fn merge(&mut self, p: &Self::Value, c: &Self::Value, e: &Self::Edge) -> Self::Value; } pub struct Rerooting { manager: R, size: usize, edge: Vec<(usize, usize, R::Edge, R::Edge)>, } impl Rerooting { pub fn new(size: usize, manager: R) -> Self { assert!(size > 0 && size < 10usize.pow(8)); Rerooting { manager: manager, size: size, edge: vec![], } } pub fn add_edge(&mut self, a: usize, b: usize, cost: R::Edge) { assert!(a < self.size && b < self.size && a != b); self.add_edge_bi(a, b, cost.clone(), cost); } pub fn add_edge_bi(&mut self, a: usize, b: usize, ab: R::Edge, ba: R::Edge) { assert!(a < self.size && b < self.size && a != b); self.edge.push((a, b, ab, ba)); } pub fn solve(&mut self) -> Vec { let size = self.size; let mut graph = vec![vec![]; size]; for e in self.edge.iter() { graph[e.0].push((e.1, e.2.clone())); graph[e.1].push((e.0, e.3.clone())); } let root = 0; let mut topo = vec![root]; let mut parent = vec![root; size]; let mut parent_edge: Vec> = (0..size).map(|_| None).collect(); for i in 0..size { let v = topo[i]; let child = std::mem::take(&mut graph[v]); for e in child.iter() { let k = graph[e.0].iter().position(|e| e.0 == v).unwrap(); let c = graph[e.0].remove(k).1; parent_edge[e.0] = Some(c); parent[e.0] = v; topo.push(e.0); } graph[v] = child; } let manager = &mut self.manager; let mut down: Vec<_> = (0..size).map(|v| manager.init(v)).collect(); for &v in topo.iter().rev() { for e in graph[v].iter() { down[v] = manager.merge(&down[v], &down[e.0], &e.1); } } let mut up: Vec<_> = (0..size).map(|v| manager.init(v)).collect(); let mut stack = vec![]; for &v in topo.iter() { if let Some(e) = parent_edge[v].take() { let ini = manager.init(v); up[v] = manager.merge(&ini, &up[v], &e); } if !graph[v].is_empty() { stack.push((graph[v].as_slice(), up[v].clone())); while let Some((g, val)) = stack.pop() { if g.len() == 1 { up[g[0].0] = val; } else { let m = g.len() / 2; let (a, b) = g.split_at(m); for a in [(a, b), (b, a)].iter() { let mut p = val.clone(); for a in a.0.iter() { p = manager.merge(&p, &down[a.0], &a.1); } stack.push((a.1, p)); } } } } for e in graph[v].iter() { up[v] = manager.merge(&up[v], &down[e.0], &e.1); } } up } } // ---------- end Rerooting ---------- // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- use std::io::Write; struct R(Vec); impl RerootingOperator for R { type Value = (u32, u32, bool); type Edge = (); fn init(&mut self, v: usize) -> Self::Value { (0, 0, self.0[v]) } fn merge(&mut self, p: &Self::Value, c: &Self::Value, _e: &Self::Edge) -> Self::Value { if !c.2 { *p } else { (p.0 + 2 + c.0, (1 + c.0 + 1 + p.1).min(p.0 + 1 + c.1), true) } } } fn run() { input! { n: usize, k: usize, e: [(usize1, usize1); n - 1], d: [usize1; k], } let mut a = vec![false; n]; for d in d { a[d] = true; } let mut solver = Rerooting::new(n, R(a)); for (a, b) in e { solver.add_edge(a, b, ()); } let ans = solver.solve(); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for a in ans { writeln!(out, "{}", a.1).ok(); } } fn main() { run(); }