import sys # sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] dij = [(0, 1), (1, 0), (0, -1), (-1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = 1 << 63 # md = 998244353 md = 10**9+7 # (底,指数)を返す # 18=2**1 * 3**2なので[(2,1),(3,2)] def PrimeFactorization(x): def plist(x): if x < 2: return [] if x & 1 == 0: return [2]+plist(x >> 1) for p in range(3, x+1, 2): if x%p == 0: return [p]+plist(x//p) if p**2 > x: return [x] pl = plist(x) pp, ee = [], [] for p in pl: if not pp or p != pp[-1]: pp += [p] ee += [0] ee[-1] += 1 return pp, ee from collections import Counter x, a, y, b = LI() def cntp(a): ca = Counter() pp, ee = PrimeFactorization(a) for p, e in zip(pp, ee): ca[p] = e return ca def solve(): cx = cntp(x) cy = cntp(y) for p, e in cy.items(): if e*b > cx[p]*a: return False return True print("Yes" if solve() else "No")