#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) * yukicoder No. 833 (https://yukicoder.me/submissions/703521) */ struct SegTree { n: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Clone { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, dat: vec![e.clone(); 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1].clone(), self.dat[2 * k + 2].clone()); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ #[allow(unused)] pub fn query(&self, mut a: usize, mut b: usize) -> I { let mut left = self.e.clone(); let mut right = self.e.clone(); a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a].clone()); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1].clone(), right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } fn powmod(x: i64, mut e: i64, m: i64) -> i64 { let mut sum = 1; let mut cur = x % m; while e > 0 { if e % 2 != 0 { sum = sum * cur % m; } cur = cur * cur % m; e /= 2; } sum } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { n: usize, q: usize, a: [u32; n], b: [[usize]; q], } let mut st = SegTree::new(n, |mut b1: Vec, b2| { for mut x in b2 { for &b in &b1 { x = min(x, b); } if x != 0 { b1.push(x); } } b1 }, vec![]); for i in 0..n { if a[i] != 0 { st.dat[st.n - 1 + i] = vec![a[i]]; } } for i in (0..st.n - 1).rev() { st.dat[i] = (st.op)(st.dat[2 * i + 1].clone(), st.dat[2 * i + 2].clone()); } for mut b in b { b.insert(0, 0); b.push(n); let l = b.len(); let mut f = 0; for i in 0..l - 1 { let x = st.query(b[i], b[i + 1]); f += b[i + 1] - b[i] - x.len(); } puts!("{}\n", powmod(2, f as i64, 1_000_000_007)); } }