#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) #if defined(_MSC_VER) || __cplusplus > 199711L #define aut(r,v) auto r = (v) #else #define aut(r,v) __typeof(v) r = (v) #endif #define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it) #define all(o) (o).begin(), (o).end() #define pb(x) push_back(x) #define mp(x,y) make_pair((x),(y)) #define mset(m,v) memset(m,v,sizeof(m)) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3fLL using namespace std; typedef vector vi; typedef pair pii; typedef vector > vpii; typedef long long ll; template inline void amin(T &x, U y) { if(y < x) x = y; } template inline void amax(T &x, U y) { if(x < y) x = y; } template struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } }; template ModInt operator^(ModInt a, long long k) { if(k < 0) return (a ^ (-k)).inverse(); ModInt r = 1; while(k) { if(k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; vector fact, factinv; void nCr_computeFactinv(int N) { N = min(N, mint::Mod - 1); fact.resize(N + 1); factinv.resize(N + 1); fact[0] = 1; rer(i, 1, N) fact[i] = fact[i - 1] * i; factinv[N] = fact[N].inverse(); for(int i = N; i >= 1; i --) factinv[i - 1] = factinv[i] * i; } mint nCr(int n, int r) { if(n >= mint::Mod) return nCr(n % mint::Mod, r % mint::Mod) * nCr(n / mint::Mod, r / mint::Mod); return r > n ? 0 : fact[n] * factinv[n - r] * factinv[r]; } mint solve(int n) { mint sum; rer(m, 0, n / 2) { int k = n + 1 - 2 * m; mint t; rer(j, 0, k) t += nCr(k, j) * (j % 2 == 0 ? 1 : -1) * (mint(k - 2 * j) ^ (n + 1)); t /= k; t *= (m % 2 == 0 ? 1 : -1); t *= mint(2) ^ (1 - k); sum += t; } return sum; } int main() { nCr_computeFactinv(100000); int N; while(~scanf("%d", &N)) { mint ans; if(N <= 2) { ans = 0; } else { ans = solve(N); } printf("%d\n", ans.get()); } return 0; }