use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get() -> T { get_word().parse().ok().unwrap() } fn powmod(x: i64, mut e: i64, m: i64) -> i64 { let mut sum = 1; let mut cur = x % m; while e > 0 { if e % 2 != 0 { sum = sum * cur % m; } cur = cur * cur % m; e /= 2; } sum } /** * Calculates x s.t. x^2 = a (mod p) * p is prime * Verified by: CF #395 Div1-C * (http://codeforces.com/contest/763/submission/24380573) */ fn modsqrt(mut a: i64, p: i64) -> Option { a %= p; if a == 0 { return Some(0); } if p == 2 { return Some(a); } if powmod(a, (p - 1) / 2, p) != 1 { return None; } let mut b = 1; while powmod(b, (p - 1) / 2, p) == 1 { b += 1; } let mut e = 0; let mut m = p - 1; while m % 2 == 0 { m /= 2; e += 1; } let mut x = powmod(a, (m - 1) / 2, p); let mut y = a * (x * x % p) % p; x = x * a % p; let mut z = powmod(b, m, p); while y != 1 { let mut j = 0; let mut t = y; while t != 1 { j += 1; t = t * t % p; } assert!(j < e); z = powmod(z, 1 << (e - j - 1), p); x = x * z % p; z = z * z % p; y = y * z % p; e = j; } Some(x) } fn mul((a, b): (i64, i64), (c, d): (i64, i64), m: i64) -> (i64, i64) { ((a * c + 3 * b * d) % m, (a * d + b * c) % m) } fn pow(x: (i64, i64), mut e: i64, m: i64) -> (i64, i64) { let mut prod = (1, 0); let mut cur = x; while e > 0 { if e % 2 == 1 { prod = mul(prod, cur, m); } cur = mul(cur, cur, m); e /= 2; } prod } fn main() { let n: i64 = get(); let m: i64 = get(); if m == 2 || m == 3 { println!("0"); return; } if m % 12 == 1 || m % 12 == 11 { let x = modsqrt(3, m).unwrap(); let exp = powmod(2, n, m - 1); let y = powmod(2 + x, exp, m); let z = powmod(2 - x + m, exp, m); println!("{}", (y + z + m - 2) % m); return; } let exp = powmod(2, n, m + 1); let ans = pow((2, 1), exp, m); println!("{}", (ans.0 * 2 + m - 2) % m); }