def Smallest_Prime_Factor(N):
    """ 0,1,2,...,N の最小の素因数のリスト (0,1 については 1 にしている)
    """

    if N==0:
        return [1]

    N=abs(N)
    L=list(range(N+1))
    L[0]=L[1]=1

    x=4
    while x<=N:
        L[x]=2
        x+=2

    x=9
    while x<=N:
        if L[x]==x:
            L[x]=3
        x+=6

    x=5
    Flag=0
    while x*x<=N:
        if L[x]==x:
            y=x*x
            while y<=N:
                if L[y]==y:
                    L[y]=x
                y+=x<<1
        x+=2+2*Flag
        Flag^=1

    return L

def Faster_Prime_Factorization(N,L):
    """ Smallest_Prime_Factors(N)で求めたリストを利用して, N を高速素因数分解する.

    L: Smallest_Prime_Factors(N)で求めたリスト
    """
    N=abs(N)

    D=[]
    while N>1:
        a=L[N]
        k=0
        while L[N]==a:
            k+=1
            N//=a
        D.append([a,k])
    return D

def Divisors_from_Prime_Factor(P,sorting=False):
    X=[1]
    for p,e in P:
        q=1
        n=len(X)
        for _ in range(e):
            q*=p
            for j in range(n):
                X.append(X[j]*q)

    if sorting:
        X.sort()

    return X
#==================================================

N=int(input())
A=list(map(int,input().split()))

alpha=max(A)
L=Smallest_Prime_Factor(alpha)
T=[0]*(alpha+1)

for a in A:
    P=Faster_Prime_Factorization(a,L)
    for d in Divisors_from_Prime_Factor(P):
        T[d]+=1

X=[0]*(N+1)
for i in range(alpha+1):
    X[T[i]]=i

for i in range(N-1,0,-1):
    X[i]=max(X[i],X[i+1])

print(*X[:0:-1],sep="\n")