#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // 使えるライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = 3.14159265359; const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad] const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const int INF = 1001001001; const ll INFL = 4004004004004004004LL; const double EPS = 1e-10; // 許容誤差に応じて調整 // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define distance (int)distance #define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); a.erase(unique(all(a)), a.end());} // 重複削除 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 入出力用の >>, << のオーバーロード template inline istream& operator>> (istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline ostream& operator<< (ostream& os, const pair& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } template inline istream& operator>> (istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline ostream& operator<< (ostream& os, const vector& v) { repe(x, v) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const map& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_map& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, stack s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; } template inline ostream& operator<< (ostream& os, queue q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; } template inline ostream& operator<< (ostream& os, deque q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; } template inline ostream& operator<< (ostream& os, priority_queue q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } template inline ostream& operator<< (ostream& os, priority_queue_rev q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビット中の 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } #define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl; #define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m "; #define dumpel(a) { int i = 0; cout << "\033[1;36m"; repe(x, a) {cout << i++ << ": " << x << endl;} cout << "\033[0m"; } #define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf()); #define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf()); // 提出用(gcc) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #define dump(x) #define dumps(x) #define dumpel(v) #define input_from_file(f) #define output_to_file(f) #endif #endif // 折りたたみ用 //-----------------AtCoder 専用----------------- #include using namespace atcoder; //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); template ostream& operator<<(ostream& os, segtree seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } template ostream& operator<<(ostream& os, lazy_segtree seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector; using vvm = vector; using vvvm = vector; //---------------------------------------------- //【約数列挙】O(√n) /* * n の約数全てをリスト divs に昇順に格納する. */ void divisors(ll n, vl& divs) { divs.clear(); if (n == 1) { divs.push_back(1); return; } ll i = 1; for (; i * i < n; i++) { if (n % i == 0) { divs.push_back(i); divs.push_back(n / i); } } if (i * i == n) divs.push_back(i); sort(all(divs)); } // O(N √max(A)) で 10^8 くらいの計算になるので TLE する. void TLE() { int n; cin >> n; vi a(n); cin >> a; map cnt; rep(i, n) { vl ds; divisors(a[i], ds); repe(d, ds) cnt[d]++; } vl res(n); repe(tmp, cnt) { ll d; int c; tie(d, c) = tmp; chmax(res[n - c], d); } repi(i, 1, n - 1) { chmax(res[i], res[i - 1]); } rep(i, n) { cout << res[i] << "\n"; } } //【素数の列挙/エラトステネスの篩】O(n log(log n)) /* * エラトステネスの篩を用いて n 以下の素数を列挙し,ps に昇順に格納する. */ void eratosthenes(int n, vi& ps) { ps.clear(); // 素数かどうかを記録しておくためのテーブル vb is_prime(n + 1LL, true); int i; // √n 以下の i の処理 for (i = 2; i <= n / i; i++) { if (is_prime[i]) { ps.push_back(i); for (int j = i * i; j <= n; j += i) { is_prime[j] = false; } } } // √n より大きい i の処理 for (; i <= n; i++) { if (is_prime[i]) ps.push_back(i); } } //【添字 gcd での畳込み】 /* * GCD_convolution(n) : O(n log(log n)) * n までの素数を持って初期化する. * * convolution_gcd(a, b) : O(n log(log n)) * c[k] = Σ_(gcd(i, j) = k) a[i] b[j] なる c を返す. * * zeta_multiple(a) : O(n log(log n)) * A[j] = Σ_(j | i) a[i] なる A を返す. * (ゼータ変換,倍数の累積和) * * mobius_multiple(A) : O(n log(log n)) * A[j] = Σ_(j | i) a[i] なる a を返す. * (メビウス変換,倍数の差分) * * 制約:1-indexed とし,a[0], b[0] は使用しない. * * 利用:【素数の列挙/エラトステネスの篩】 */ template struct GCD_convolution { // 参考 : https://qiita.com/convexineq/items/afc84dfb9ee4ec4a67d5 vi ps; // 素数のリスト GCD_convolution() {} GCD_convolution(int n) { eratosthenes(n, ps); } void zeta_multiple(vector& f) { int n = sz(f); // 各素因数ごとに上からの累積和をとる repe(p, ps) { repir(i, (n - 1) / p, 1) f[i] += f[(ll)p * i]; } } void mobius_multiple(vector& f) { int n = sz(f); // 各素因数ごとに下からの差分をとる repe(p, ps) { repi(i, 1, (n - 1) / p) f[i] -= f[(ll)p * i]; } } vector convolution_gcd(vector a, vector b) { int n = sz(a); // 各素因数の min をとったものが gcd なので min 畳み込みを行う. zeta_multiple(a); zeta_multiple(b); rep(i, n) a[i] *= b[i]; mobius_multiple(a); return a; } }; template vector naive_convolution(vector a, vector b) { int n = sz(a); vector c(n); repi(i, 1, n - 1) { repi(j, 1, n - 1) { int k = gcd(i, j); c[k] += a[i] * b[j]; } } return c; } void check() { int n; cin >> n; vi a(n), b(n); cin >> a >> b; dump(a); dump(b); GCD_convolution g(n); auto res = g.convolution_gcd(a, b); dump(res); auto res2 = naive_convolution(a, b); dump(res2); } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; const int m = (int)1e6 + 1; vi cnt(m); rep(i, n) { int a; cin >> a; cnt[a]++; } GCD_convolution g(m); g.zeta_multiple(cnt); dump(cnt); vi res(n + 1); repi(j, 1, m - 1) { chmax(res[n - cnt[j]], j); } repi(i, 1, n - 1) { chmax(res[i], res[i - 1]); } rep(i, n) { cout << res[i] << "\n"; } }