#include #define forn(i,s,t) for(register int i=(s); i<=(t); ++i) #define forl(i,s,t) for(register i64 i=(s); i<=(t); ++i) #define form(i,s,t) for(register int i=(s); i>=(t); --i) #define rep(i,s,t) for(register int i=(s); i<(t); ++i) #define IT(u) for(register int i=G[u]; i; i=E[i].nxt) using namespace std; namespace FASTIO { const int SIZ = 1 << 26 | 1; char ibuf[SIZ], obuf[SIZ], *iS = ibuf, *iT = ibuf, *oS = obuf, *oT = obuf + SIZ - 1, qwq[60], qaq; #define gc() (iS == iT && (iT = (iS = ibuf) + fread(ibuf, 1, SIZ, stdin), iS == iT) ? EOF : *iS++) template inline void Rdn(T& A) { register bool fl = 0; register char ch = gc(); A = 0; while(!isdigit(ch)) fl = (ch == '-'), ch = gc(); while(isdigit(ch)) A = (A * 10) + (ch & 15), ch = gc(); fl && (A = -A); } inline void Rdn(char& c) {while((c = gc()) == ' ' || c == '\n' || c == '\r');} inline void Rdn(char* s) { while((*s = gc()) == ' ' || *s == '\n' || *s == '\r') ; if(*s == EOF) return ; while(*s != ' ' && *s != '\n' && *s != '\r' && *s != EOF) *(++s) = gc(); *s = 0; } template inline void Rdn(T& A, U& ...B) {Rdn(A), Rdn(B...);} inline void flush() {fwrite(obuf, 1, oS - obuf, stdout), oS = obuf;} inline void pc(char c) {*oS ++ = c; if(oS == oT) flush();} template inline void Wtn(T A) { if(!A) return pc('0'); if(A < 0) pc('-'), A = -A; while(A) qwq[++qaq] = A % 10 + '0', A /= 10; while(qaq) pc(qwq[qaq -- ]); } inline void Wtn(char A) {pc(A);} inline void Wtn(char *s) {while(*s) pc(*s), ++s;} inline void Wtn(const char *s) {while(*s) pc(*s), ++s;} template inline void Wtn(T A, U ...B) {Wtn(A), Wtn(B...);} #undef gc } using FASTIO :: Rdn; using FASTIO :: Wtn; using FASTIO :: flush; const int Mod = 1e9 + 7; namespace Modint { struct Mint { int res; Mint() {} Mint(int _r) : res(_r) {} inline friend Mint operator + (const Mint& A, const Mint& B) { return Mint((A.res + B.res >= Mod) ? (A.res + B.res - Mod) : (A.res + B.res)); } inline friend Mint operator - (const Mint& A, const Mint& B) {return A + Mint(Mod - B.res); } inline friend Mint operator * (const Mint& A, const Mint& B) {return Mint(1ll * A.res * B.res % Mod); } inline friend Mint& operator += (Mint& A, const Mint& B) {return A = A + B; } inline friend Mint& operator -= (Mint& A, const Mint& B) {return A = A - B; } inline friend Mint& operator *= (Mint& A, const Mint& B) {return A = A * B; } inline friend Mint q_pow(Mint p, int k = Mod - 2) { Mint res(1); for (; k; k >>= 1, p *= p) (k & 1) && (res *= p, 0); return res; } } ; } using Modint :: Mint; typedef long long i64; typedef double f64; typedef unsigned long long u64; typedef pair pii; typedef pair piu; const int N = 2e5 + 5; const i64 INF = 1e18; inline void init() {} struct node { int l, r, val; node() {} node(int _l, int _r, int _v) : l(_l), r(_r), val(_v) {} } b[N]; int n, a[N], m, non[N], s; inline void solve() { Rdn(n); int Prod = 1; bool GG = 0; forn (i, 1, n) { Rdn(a[i]); if (GG || 1ll * Prod * a[i] > n) GG = 1; else Prod *= a[i]; } if (GG) { int now = 1; Mint res(0), Prd(1); while (now <= n && a[now] == 1) res += Mint(1), ++now; int nnw = n; while (nnw > now && a[nnw] == 1) res += Mint(1), nnw--; forn (i, now, nnw) Prd *= Mint(a[i]); res += Prd; Wtn(res.res, '\n'); return ; } int Rdx = 0; forn (l, 1, n) { int r = l; int tmp(a[l]); while (r < n && (a[r + 1] > 1) == (a[l] > 1)) ++r, tmp *= a[r]; b[++m] = node(l, r, tmp); // Wtn("[", l, ", ", r, "]\n"); if (l == 1 && tmp == 1) --m, Rdx += r - l + 1; else if (r == n && tmp == 1) --m, Rdx += r - l + 1; else if (tmp == 1) non[s++] = m; l = r; } int ans = 1; b[0] = b[m + 1] = node(0, 0, 1); rep (S, 0, 1 << s) { int res = b[1].val, lst = b[1].val; rep (i, 0, s) { if (S >> i & 1) res -= lst, lst *= b[non[i] + 1].val, res += lst; else res += b[non[i]].r - b[non[i]].l + 1 + b[non[i] + 1].val, lst = b[non[i] + 1].val; } ans = max(ans, res); } Wtn(ans + Rdx, '\n'); } int Trd; int main() { Trd = 1; while(Trd--) init(), solve(); flush(); return 0; }