// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt

; // https://yukicoder.me/problems/no/907 (4) // 確率密度関数を不定積分。区間に分ける必要あり。 // Tags: real-numbers, continuous-probability-distribution fn main() { input! { n: usize, ab: [(i64, i64); n], } let mut coo = vec![]; for &(a, b) in &ab { coo.push(a); coo.push(b); } coo.sort(); coo.dedup(); let m = coo.len(); let mut dp = vec![vec![MInt::new(0)]; m - 1]; { let (a, b) = ab[0]; let inv = MInt::new(b - a).inv(); let a = coo.binary_search(&a).unwrap(); let b = coo.binary_search(&b).unwrap(); for i in a..b { dp[i][0] = inv; } } let mut invtbl = vec![MInt::new(0); n + 1]; for i in 1..n + 1 { invtbl[i] = MInt::new(i as i64).inv(); } for i in 1..n { let (a, b) = ab[i]; let inv = MInt::new(b - a).inv(); let a = coo.binary_search(&a).unwrap(); let b = coo.binary_search(&b).unwrap(); let mut ep = vec![vec![MInt::new(0); i + 1]; m - 1]; let mut tot = MInt::new(0); if i % 2 == 0 { // >= for j in (a..m - 1).rev() { let l = coo[j]; let r = coo[j + 1]; let mut cur = MInt::new(r - l) * inv; for k in 0..i { tot += cur * invtbl[k + 1] * dp[j][k]; cur *= r - l; } if j < b { for k in 0..i { ep[j][k + 1] -= dp[j][k] * invtbl[k + 1] * inv; } ep[j][0] += tot; } } } else { // <= for j in 0..b { let l = coo[j]; let r = coo[j + 1]; if j >= a { for k in 0..i { ep[j][k + 1] += dp[j][k] * invtbl[k + 1] * inv; } ep[j][0] += tot; } let mut cur = MInt::new(r - l) * inv; for k in 0..i { tot += cur * invtbl[k + 1] * dp[j][k]; cur *= r - l; } } } dp = ep; } let mut tot = MInt::new(0); for i in 0..m - 1 { let l = coo[i]; let r = coo[i + 1]; let mut cur = MInt::new(r - l); for j in 0..n { tot += cur * invtbl[j + 1] * dp[i][j]; cur *= r - l; } } println!("{}", tot); }