#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; const ll mod = 998244353; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; typedef double ld; typedef pair LDP; const ld eps = 1e-4; const ld pi = acosl(-1.0); template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n % mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } template void fwt(vector& f) { int n = f.size(); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if ((j & i) == 0) { T x = f[j], y = f[j | i]; f[j] = x + y, f[j | i] = x - y; } } } } template void ifwt(vector& f) { int n = f.size(); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if ((j & i) == 0) { T x = f[j], y = f[j | i]; f[j] = (x + y) / 2, f[j | i] = (x - y) / 2; } } } } typedef vector> mat; typedef vector vec; mat mtmul(mat& A, mat& B) { mat C(A.size(), vec(B[0].size())); rep(i, (int)A.size()) { rep(k, (int)B.size()) { rep(j, (int)B[0].size()) { C[i][j] += A[i][k] * B[k][j]; } } } return C; } mat mtpow(mat A, ll n) { mat B(A.size(), vec(A.size())); rep(i, (int)A.size()) { B[i][i] = 1; } while (n > 0) { if (n & (ll)1)B = mtmul(B, A); A = mtmul(A, A); n >>= 1; } return B; } void solve() { int n, q; cin >> n >> q; vector f(n); rep(i, n) { modint p = (ll)(i + 1) * (n - i); modint ad = (ll)n * (n + 1) / 2; modint np = ad - p; mat A = { {np + ad,p,0},{p,np + ad,0},{1,0,1 } }; A = mtpow(A, q); f[i] = A[2][1]; } vector fd(n); rep(i, n) { modint p = (ll)(i) * (n - i+1); modint ad = (ll)n * (n + 1) / 2; modint np = ad - p; modint al = ad + ad; mat A = { {np + ad,p,0},{p,np + ad,0},{(modint)1,0,(modint)al } }; A = mtpow(A, q); fd[i] = A[2][1]; } vector r(n + 1); rep(i, n)r[i + 1] = r[i] + (modint)i; modint ans = 0; rep(x, n-1) { modint val = (modint)(x + 1) * f[x]; int cy = n - x - 1; val *= (modint)cy * (modint)n - r[x + 2]; ans += val; } //cout << ans << "\n"; rep(y, n) { modint val = (modint)(n - y) * f[y] * (modint)-1; val *= r[y+1]; ans += val; } //cout << ans << "\n"; ans = 0; vector r2(n + 1); rep(i, n) { r2[i + 1] = r2[i] + (modint)(i + 1) * (modint)(n - i); } rep1(d, n-1) { modint val = fd[d]; modint coef = 0; /*for (int x = 0; x +d < n; x++) { coef += (ll)(x + 1) * (n - (x + d)); }*/ coef = r2[n - d] - (modint)d * r[n - d+1]; val *= coef; ans += val; } /*ans = 0; for (int d = 1; d <= n - 1; d++) { rep(x, n - d) { int i = d; modint p = (ll)(i) * (n - i + 1); modint ad = (ll)n * (n + 1) / 2; modint np = ad - p; mat A = { {np + ad,p,0},{p,np + ad,0},{(x+1)*(n-(x+d)) ,0,1 } }; A = mtpow(A, q); ans += A[2][1]; } }*/ //cout << ans << "\n"; ans /= 2; cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); init_f(); //init(); //int t; cin >> t; rep(i, t) solve(); return 0; }