N = 2*10**5
mod = 998244353
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inverse = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inverse[i]=( ( -inverse[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inverse[i]) % mod )
inverse[0]=0

def cmb(n, r, mod):
    if ( r<0 or r>n ):
        return 0
    r = min(r, n-r)
    return (g1[n] * g2[r] % mod) * g2[n-r] % mod



import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import log,gcd

input = lambda :sys.stdin.readline()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

mod = 998244353

dp = [0 for i in range(10**6+1)]
dp[1] = 0
dp[2] = 650
for i in range(3,10**6+1):
    if i&1:
        dp[i] = 26 * dp[i-2] + 1300 * pow(26,(i-3)//2,mod)
        dp[i] %= mod
    else:
        dp[i] = 26 * dp[i-2] + 1300 * 26 * pow(26,(i-4)//2,mod) - 650
        dp[i] %= mod

for _ in range(int(input())):
    print(dp[int(input())])