#include #include using namespace atcoder; //#pragma GCC target ("avx2") //#pragma GCC optimization("O3") //#pragma GCC optimization("unroll-loops") //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define int long long #define double long double #define stoi stoll #define endl "\n" using std::abs; using namespace std; //constexpr int MOD = 1000000007; constexpr int MOD = 998244353; constexpr double PI = 3.14159265358979323846; const int INF = 1LL << 60; const int dx[4] = { 0, 1, 0, -1 }; const int dy[4] = { -1, 0, 1, 0 }; #define rep(i,n) for(int i=0;i=0;i--) #define Rrep(i,n) for(int i=n;i>0;i--) #define LAST(x) x[x.size()-1] #define ALL(x) (x).begin(),(x).end() #define MAX(x) *max_element(ALL(x)) #define MIN(x) *min_element(ALL(x) #define RUD(a,b) (((a)+(b)-1)/(b)) #define sum1_n(n) ((n)*(n+1)/2) #define SUM1n2(n) (n*(2*n+1)*(n+1))/6 #define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1)) #define SZ(x) ((int)(x).size()) #define PB push_back #define Fi first #define Se second typedef vector vint; typedef vector vvint; typedef vector vvvint; typedef vector vdouble; typedef vector vvdouble; typedef vector vvvdouble; typedef vector vstring; typedef vector vbool; typedef vector vvbool; typedef vector vvvbool; typedef map mapint; typedef pair pint; typedef pair pstring; typedef pair pvstring; typedef tupletint; typedef vector vpint; typedef vector vvpint; typedef vector vtint; typedef vector vvtint; int factorial(int a) { if (a == 0) return 1; else return a * factorial(a - 1); } int nPr(int n, int r) { int s = n - r + 1; int sum = 1; for (int i = s; i <= n; i++) sum *= i; return sum; } int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } int LCM(int a, int b) { return a / GCD(a, b) * b; } double LOG(int a, int b) { return log(b) / log(a); } double DISTANCE(int x1, int y1, int x2, int y2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } inline bool BETWEEN(int x, int min, int max) { if (min <= x && x <= max) return true; else return false; } inline bool between(int x, int min, int max) { if (min < x && x < max) return true; else return false; } inline bool BETWEEN2(int i,int j,int H,int W) { if (BETWEEN(i,0,H-1)&&BETWEEN(j,0,W-1)) return true; else return false; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } inline bool bit(int x, int i) { return x >> i & 1; } int in() { int x; cin >> x; return x; } string ins() { string x; cin >> x; return x; } vint invi(int N) { vint x(N); rep(i, N)cin >> x[i]; return x; } #define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl template struct my_pair :std::pair{ using std::pair::pair; my_pair operator+(const my_pair p){ return my_pair(this->first + p.first, this->second + p.second); } my_pair operator-(const my_pair p) { return my_pair(this->first - p.first, this->second - p.second); } void print(){ cout << this->first << " " << this->second << endl; } }; template struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v% MOD) { if (val < 0) val += MOD; } constexpr int getmod() const { return MOD; } constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; } constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp& r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp& r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp& r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator == (const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp& r) const noexcept { return this->val != r.val; } friend constexpr istream& operator >> (istream& is, Fp& x) noexcept { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream& os, const Fp& x) noexcept { return os << x.val; } friend constexpr Fp modpow(const Fp& r, long long n) noexcept { if (n == 0) return 1; if (n < 0) return modpow(modinv(r), -n); auto t = modpow(r, n / 2); t = t * t; if (n & 1) t = t * r; return t; } friend constexpr Fp modinv(const Fp& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } return Fp(u); } }; using mint = Fp; const int MAXR = 110000; int fac[MAXR], finv[MAXR], inv[MAXR]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAXR; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } int nCr(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } mint nCrm(long long N, long long K) { mint res = 1; if (N < K) return 0; if (N < 0 || K < 0) return 0; for (long long n = 0; n < K; ++n) { res *= (N - n); res /= (n + 1); } return res; } int nCr2(int n, int k) { //MODらない奴 if (n < k) return 0; if (n < 0 || k < 0) return 1; int ans = 1; REP(i, k) { ans *= n--; ans /= i; } return ans; } vpint prime_factorize(int N) { vpint res; for (int i = 2; i * i <= N; i++) { if (N % i != 0) continue; int ex = 0; while (N % i == 0) { ++ex; N /= i; } res.push_back({ i, ex }); } if (N != 1) res.push_back({ N, 1 }); return res; } double median(vint a) { int N = a.size(); if (N % 2 == 1) return (double)a[N / 2]; else return (double)(a[N / 2 - 1] + a[N / 2]) / 2; } typedef vector vmint; typedef vector vvmint; int ipow(int x, int n) { int ans = 1; while (n > 0) { if (n & 1) ans *= x; x *= x; n >>= 1; } return ans; } string base_to_k(int n, int k) { //n(10)→n(k) string ans = ""; while (n) { ans += to_string(n % k); n /= k; } reverse(ALL(ans)); return ans; } string base(string n, int k, int l) { //n(k)→n(l) return n; } int mpow(int x, int n, int M) { int ans = 1; while (n > 0) { if (n & 1) ans = ans * x % M; x = x * x % M; n >>= 1; } return ans%M; } string base_from_k(string n, int k) { //n(k)→n(10) int ans = 0; int N = n.size(); rep(i, N) ans += (n[N - 1 - i] - '0') * ipow(k, i); return to_string(ans); } template vector compress(vector& X) { vector vals = X; sort(ALL(vals)); vals.erase(unique(ALL(vals)), vals.end()); rep(i,SZ(X)) X[i] = lower_bound(ALL(vals), X[i]) - vals.begin(); return vals; } typedef complex con; template< typename G > struct LowLink { const G& g; vector< int > used, ord, low; vector< int > articulation; vector< pair< int, int > > bridge; LowLink(const G& g) : g(g) {} int dfs(int idx, int k, int par) { used[idx] = true; ord[idx] = k++; low[idx] = ord[idx]; bool is_articulation = false; int cnt = 0; for (auto& to : g[idx]) { if (!used[to]) { ++cnt; k = dfs(to, k, idx); low[idx] = min(low[idx], low[to]); is_articulation |= ~par && low[to] >= ord[idx]; if (ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int)to)); } else if (to != par) { low[idx] = min(low[idx], ord[to]); } } is_articulation |= par == -1 && cnt > 1; if (is_articulation) articulation.push_back(idx); return k; } virtual void build() { used.assign(g.size(), 0); ord.assign(g.size(), 0); low.assign(g.size(), 0); int k = 0; for (int i = 0; i < g.size(); i++) { if (!used[i]) k = dfs(i, k, -1); } } }; int LIS_op(int fi,int se) { return max(fi,se); } int LIS_e() { return 0; } struct LIS { int N=0, ans=0; vpint a; vint v; LIS(int n,vint x) { N = n; a.resize(N); v.resize(N); rep(i, N)a[i] = { x[i],i }; sort(ALL(a)); } int solve() { segtree seg(v); rep(i, N) { int m = seg.prod(0, a[i].second) + 1; seg.set(a[i].second, m); chmax(ans, m); } return ans; } }; class LCA { private: int root; int k; // n<=2^kとなる最小のk vector> dp; // dp[i][j]:=要素jの2^i上の要素 vector depth; // depth[i]:=rootに対する頂点iの深さ public: LCA(const vector>& _G, const int _root = 0) { int n = _G.size(); root = _root; k = 1; int nibeki = 2; while (nibeki < n) { nibeki <<= 1; k++; } // 頂点iの親ノードを初期化 dp = vector>(k + 1, vector(n, -1)); depth.resize(n); function _dfs = [&](int v, int p) { dp[0][v] = p; for (auto nv : _G[v]) { if (nv == p) continue; depth[nv] = depth[v] + 1; _dfs(nv, v); } }; _dfs(root, -1); // ダブリング for (int i = 0; i < k; i++) { for (int j = 0; j < n; j++) { if (dp[i][j] == -1) continue; dp[i + 1][j] = dp[i][dp[i][j]]; } } } /// get LCA int get(int u, int v) { if (depth[u] < depth[v]) swap(u, v); // u側を深くする if (depth[u] != depth[v]) { long long d = depth[u] - depth[v]; for (int i = 0; i < k; i++) if ((d >> i) & 1) u = dp[i][u]; } if (u == v) return u; for (int i = k; i >= 0; i--) { if (dp[i][u] != dp[i][v]) { u = dp[i][u], v = dp[i][v]; } } return dp[0][u]; } int get_distance(const int u, const int v) { int lca = get(u, v); return depth[u] + depth[v] - 2 * depth[lca]; } }; mint res = 0; template class BIT { private: int n; vector bit; public: // 0_indexed で i 番目の要素に x を加える void add(int i, T x) { i++; while (i < n) { bit[i] += x, i += i & -i; } } // 0_indexed で [0,i] の要素の和(両閉区間!!) T sum(int i) { i++; T s = 0; while (i > 0) { s += bit[i], i -= i & -i; } return s; } BIT() {} //初期値がすべて0の場合 BIT(int sz) : n(sz + 1), bit(n, 0) {} BIT(const vector& v) : n((int)v.size() + 1), bit(n, 0) { for (int i = 0; i < n - 1; i++) { add(i, v[i]); } } void print() { for (int i = 0; i < n - 1; i++) { cout << sum(i) - sum(i - 1) << " "; } cout << "\n"; } //-1スタート void print_sum() { for (int i = 0; i < n; i++) { cout << sum(i - 1) << " "; } cout << "\n"; } }; // u を昇順にソートするのに必要な交換回数(転倒数) (u は {0,..., n-1} からなる重複を許した長さ n の数列) long long inv_count(const vector& u) { int n = (int)u.size(); BIT bt(n); long long ans = 0; for (int i = 0; i < n; i++) { ans += i - bt.sum(u[i]); int x = i - bt.sum(u[i]); res += mpow(2, n-1 -(x+u[i]), MOD) - 1; cout << x<<" "<> a[i]; cout << median(a) << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); solve(); } //bit全探索 /* rep(i,1LL<