import sys sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = 18446744073709551615 inf = 4294967295 md = 10**9+7 # md = 998244353 def arbitrary_mod_convolve(a, b, mod): MOD1 = lambda: 167772161 MOD2 = lambda: 469762049 MOD3 = lambda: 1224736769 ROOT1 = lambda: 3 def _ntt(a, h, MOD, ROOT): roots = [pow(ROOT(), (MOD()-1) >> i, MOD()) for i in range(h+1)] for i in range(h): m = 1 << (h-i-1) for j in range(1 << i): w = 1 j *= 2*m for k in range(m): a[j+k], a[j+k+m] = (a[j+k]+a[j+k+m])%MOD(), (a[j+k]-a[j+k+m])*w%MOD() w *= roots[h-i] w %= MOD() def _intt(a, h, MOD, ROOT): roots = [pow(ROOT(), (MOD()-1) >> i, MOD()) for i in range(h+1)] iroots = [pow(r, MOD()-2, MOD()) for r in roots] for i in range(h): m = 1 << i for j in range(1 << (h-i-1)): w = 1 j *= 2*m for k in range(m): a[j+k], a[j+k+m] = (a[j+k]+a[j+k+m]*w)%MOD(), (a[j+k]-a[j+k+m]*w)%MOD() w *= iroots[i+1] w %= MOD() inv = pow(1 << h, MOD()-2, MOD()) for i in range(1 << h): a[i] *= inv a[i] %= MOD() def ntt_convolve(a, b, MOD, ROOT): n = 1 << (len(a)+len(b)-1).bit_length() h = n.bit_length()-1 a = list(a)+[0]*(n-len(a)) b = list(b)+[0]*(n-len(b)) _ntt(a, h, MOD, ROOT), _ntt(b, h, MOD, ROOT) a = [va*vb%MOD() for va, vb in zip(a, b)] _intt(a, h, MOD, ROOT) return a x = ntt_convolve(a, b, MOD1, ROOT1) y = ntt_convolve(a, b, MOD2, ROOT1) z = ntt_convolve(a, b, MOD3, ROOT1) inv1_2 = pow(MOD1(), MOD2()-2, MOD2()) inv12_3 = pow(MOD1()*MOD2(), MOD3()-2, MOD3()) mod12 = MOD1()*MOD2()%mod res = [0]*len(x) for i in range(len(x)): v1 = (y[i]-x[i])*inv1_2%MOD2() v2 = (z[i]-(x[i]+MOD1()*v1)%MOD3())*inv12_3%MOD3() res[i] = (x[i]+MOD1()*v1+mod12*v2)%mod return res[:len(a)+len(b)-1] n = II() a = [II() for _ in range(n+1)] b = [II() for _ in range(n+1)] c = arbitrary_mod_convolve(a, b, md)[:n+1] ans = 0 for k in c: ans += k ans %= md print(ans)