#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (n); ++i) #define REP3(i, m, n) for (i32 i = (m); i < (n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; using i32 = signed int; using i64 = signed long long; using i128 = __int128_t; template using Vec = vector; template bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } [[maybe_unused]] constexpr i32 inf = 1000000100; [[maybe_unused]] constexpr i64 inf64 = 3000000000000000100; struct SetIO { SetIO() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); } } set_io; // ===== new_library/graph/graph.hpp ===== #include #include template class Graph { std::vector> edges; public: Graph() : edges() {} Graph(std::size_t v) : edges(v) {} template void add_edge(std::size_t from, std::size_t to, T &&... val) { edges[from].emplace_back(Edge(to, std::forward(val) ...)); } template void add_undirected_edge(std::size_t u, std::size_t v, const T &... val) { edges[u].emplace_back(Edge(v, val...)); edges[v].emplace_back(Edge(u, val...)); } std::size_t size() const { return edges.size(); } const std::vector &operator[](std::size_t v) const { return edges[v]; } std::vector &operator[](std::size_t v) { return edges[v]; } }; template struct WeightedEdge { std::size_t to; T weight; WeightedEdge(std::size_t t, const T &w) : to(t), weight(w) {} operator std::size_t() const { return to; } }; // ===== new_library/graph/graph.hpp ===== // ===== new_library/graph/connected_components.hpp ===== #include #include #include class ConnectedComponents { std::vector number; std::size_t comp; public: template ConnectedComponents(const G &graph) : number(graph.size(), graph.size()) , comp(0) { std::queue que; for (std::size_t i = 0; i < graph.size(); ++i) { if (number[i] != graph.size()) continue; que.push(i); number[i] = comp; while (!que.empty()) { std::size_t v = que.front(); que.pop(); for (const auto &e : graph[v]) { if (number[(std::size_t) e] == graph.size()) { number[(std::size_t) e] = number[v]; que.push((std::size_t) e); } } } ++comp; } } std::size_t operator[](std::size_t v) const { return number[v]; } std::vector> group() const { std::vector> ret(comp); for (std::size_t i = 0; i < number.size(); ++i) ret[number[i]].push_back(i); return ret; } std::size_t components() const { return comp; } }; // ===== new_library/graph/connected_components.hpp ===== bool solve(i32 n, Vec a, Vec b) { Graph g(n + 1); REP(k, 2, n + 1) { for (i32 i = k; i + k <= n; i += k) { g.add_undirected_edge(i, i + k); } } ConnectedComponents cc(g); auto comp = cc.group(); for (const auto &vs : comp) { if (vs[0] == 0) continue; Vec sa, sb; sa.resize(vs.size()); sb.resize(vs.size()); for (i32 i : vs) { sa.push_back(a[i]); sb.push_back(b[i]); } sort(ALL(sa)); sort(ALL(sb)); if (sa != sb) { return false; } } return true; } int main() { i32 t; cin >> t; while (t--) { i32 n; cin >> n; Vec a(n + 1, 0), b(n + 1, 0); REP(i, n) cin >> a[i + 1]; REP(i, n) cin >> b[i + 1]; cout << (solve(n, move(a), move(b)) ? "Yes\n" : "No\n"); } }