class Dijkstra(): class Edge(): def __init__(self, _to, _cost): self.to = _to self.cost = _cost def __init__(self, V): self.G = [[] for i in range(V)] self._E = 0 self._V = V @property def E(self): return self._E @property def V(self): return self._V def add_edge(self, _from, _to, _cost): self.G[_from].append(self.Edge(_to, _cost)) self._E += 1 def shortest_path(self, s): import heapq que = [] d = [10**15] * self.V d[s] = 0 heapq.heappush(que, (0, s)) while len(que) != 0: cost, v = heapq.heappop(que) if d[v] < cost: continue for i in range(len(self.G[v])): e = self.G[v][i] if d[e.to] > d[v] + e.cost: d[e.to] = d[v] + e.cost heapq.heappush(que, (d[e.to], e.to)) return d import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) N,L = mi() W = li() m = min(W) D = [L+1 for i in range(m)] D[0] = 0 pq = [(0,0)] while pq: d,v = heappop(pq) if D[v] < d: continue for w in W: if D[(v+w)%m] > D[v] + w: D[(v+w)%m] = D[v] + w heappush(pq,(D[v]+w,(v+w)%m)) res = 0 for r in range(m): if D[r] <= L: res += (L-D[r])//m + 1 print(res-1)