//#pragma GCC optimize("Ofast") #pragma GCC target("avx2") //#undef LOCAL #include #include #include #include #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #include #include #include #ifdef _MSC_VER #include #endif #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { template , internal::is_static_modint_t* = nullptr> struct fft_info { static constexpr int rank2 = bsf_constexpr(mint::mod() - 1); std::array root; // root[i]^(2^i) == 1 std::array iroot; // root[i] * iroot[i] == 1 std::array rate2; std::array irate2; std::array rate3; std::array irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template * = nullptr> void butterfly(std::vector& a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template * = nullptr> void butterfly_inv(std::vector& a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info info; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val(); ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val(); } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } template * = nullptr> std::vector convolution_naive(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); std::vector ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template * = nullptr> std::vector convolution_fft(std::vector a, std::vector b) { int n = int(a.size()), m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template * = nullptr> std::vector convolution(std::vector&& a, std::vector&& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template * = nullptr> std::vector convolution(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template ::value>* = nullptr> std::vector convolution(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint; std::vector a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector convolution_ll(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution(a, b); auto c2 = convolution(a, b); auto c3 = convolution(a, b); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #include #include #include #include #include #include #include #include #include #include namespace yosupo { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } } // namespace internal int bsf(unsigned int n) { return __builtin_ctz(n); } int bsf(unsigned long n) { return __builtin_ctzl(n); } int bsf(unsigned long long n) { return __builtin_ctzll(n); } int bsf(unsigned __int128 n) { unsigned long long low = (unsigned long long)(n); unsigned long long high = (unsigned long long)(n >> 64); return low ? __builtin_ctzll(low) : 64 + __builtin_ctzll(high); } int bsr(unsigned int n) { return 8 * (int)sizeof(unsigned int) - 1 - __builtin_clz(n); } int bsr(unsigned long n) { return 8 * (int)sizeof(unsigned long) - 1 - __builtin_clzl(n); } int bsr(unsigned long long n) { return 8 * (int)sizeof(unsigned long long) - 1 - __builtin_clzll(n); } int bsr(unsigned __int128 n) { unsigned long long low = (unsigned long long)(n); unsigned long long high = (unsigned long long)(n >> 64); return high ? 127 - __builtin_clzll(high) : 63 - __builtin_ctzll(low); } int popcnt(unsigned int n) { return __builtin_popcount(n); } int popcnt(unsigned long n) { return __builtin_popcountl(n); } int popcnt(unsigned long long n) { return __builtin_popcountll(n); } } // namespace yosupo #include #include #include namespace yosupo { namespace internal { template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || internal::is_signed_int128::value || internal::is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; template using is_integral_t = std::enable_if_t::value>; template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace yosupo namespace yosupo { struct Scanner { public: Scanner(const Scanner&) = delete; Scanner& operator=(const Scanner&) = delete; Scanner(FILE* fp) : fd(fileno(fp)) { line[0] = 127; } void read() {} template void read(H& h, T&... t) { bool f = read_single(h); assert(f); read(t...); } int read_unsafe() { return 0; } template int read_unsafe(H& h, T&... t) { bool f = read_single(h); if (!f) return 0; return 1 + read_unsafe(t...); } int close() { return ::close(fd); } private: static constexpr int SIZE = 1 << 15; int fd = -1; std::array line; int st = 0, ed = 0; bool eof = false; bool read_single(std::string& ref) { if (!skip_space()) return false; ref = ""; while (true) { char c = top(); if (c <= ' ') break; ref += c; st++; } return true; } bool read_single(double& ref) { std::string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } template ::value>* = nullptr> bool read_single(T& ref) { if (!skip_space<50>()) return false; ref = top(); st++; return true; } template * = nullptr, std::enable_if_t::value>* = nullptr> bool read_single(T& sref) { using U = internal::to_unsigned_t; if (!skip_space<50>()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } U ref = 0; do { ref = 10 * ref + (line[st++] & 0x0f); } while (line[st] >= '0'); sref = neg ? -ref : ref; return true; } template * = nullptr, std::enable_if_t::value>* = nullptr> bool read_single(U& ref) { if (!skip_space<50>()) return false; ref = 0; do { ref = 10 * ref + (line[st++] & 0x0f); } while (line[st] >= '0'); return true; } bool reread() { if (ed - st >= 50) return true; if (st > SIZE / 2) { std::memmove(line.data(), line.data() + st, ed - st); ed -= st; st = 0; } if (eof) return false; auto u = ::read(fd, line.data() + ed, SIZE - ed); if (u == 0) { eof = true; line[ed] = '\0'; u = 1; } ed += int(u); line[ed] = char(127); return true; } char top() { if (st == ed) { bool f = reread(); assert(f); } return line[st]; } template bool skip_space() { while (true) { while (line[st] <= ' ') st++; if (ed - st > TOKEN_LEN) return true; if (st > ed) st = ed; for (auto i = st; i < ed; i++) { if (line[i] <= ' ') return true; } if (!reread()) return false; } } }; struct Printer { public: template void write() {} template void write(const H& h, const T&... t) { if (F) write_single(sep); write_single(h); write(t...); } template void writeln(const T&... t) { write(t...); write_single('\n'); } Printer(FILE* _fp) : fd(fileno(_fp)) {} ~Printer() { flush(); } int close() { flush(); return ::close(fd); } void flush() { if (pos) { auto res = ::write(fd, line.data(), pos); assert(res != -1); pos = 0; } } private: static std::array, 100> small; static std::array tens; static constexpr size_t SIZE = 1 << 15; int fd; std::array line; size_t pos = 0; std::stringstream ss; template ::value>* = nullptr> void write_single(const T& val) { if (pos == SIZE) flush(); line[pos++] = val; } template * = nullptr, std::enable_if_t::value>* = nullptr> void write_single(const T& val) { using U = internal::to_unsigned_t; if (val == 0) { write_single('0'); return; } if (pos > SIZE - 50) flush(); U uval = val; if (val < 0) { write_single('-'); uval = -uval; } write_unsigned(uval); } template * = nullptr> void write_single(U uval) { if (uval == 0) { write_single('0'); return; } if (pos > SIZE - 50) flush(); write_unsigned(uval); } template * = nullptr> static int calc_len(U x) { int i = (bsr(x) * 3 + 3) / 10; if (x < tens[i]) return i; else return i + 1; } template * = nullptr, std::enable_if_t<2 >= sizeof(U)>* = nullptr> void write_unsigned(U uval) { size_t len = calc_len(uval); pos += len; char* ptr = line.data() + pos; while (uval >= 100) { ptr -= 2; memcpy(ptr, small[uval % 100].data(), 2); uval /= 100; } if (uval >= 10) { memcpy(ptr - 2, small[uval].data(), 2); } else { *(ptr - 1) = char('0' + uval); } } template * = nullptr, std::enable_if_t<4 == sizeof(U)>* = nullptr> void write_unsigned(U uval) { std::array buf; memcpy(buf.data() + 6, small[uval % 100].data(), 2); memcpy(buf.data() + 4, small[uval / 100 % 100].data(), 2); memcpy(buf.data() + 2, small[uval / 10000 % 100].data(), 2); memcpy(buf.data() + 0, small[uval / 1000000 % 100].data(), 2); if (uval >= 100000000) { if (uval >= 1000000000) { memcpy(line.data() + pos, small[uval / 100000000 % 100].data(), 2); pos += 2; } else { line[pos] = char('0' + uval / 100000000); pos++; } memcpy(line.data() + pos, buf.data(), 8); pos += 8; } else { size_t len = calc_len(uval); memcpy(line.data() + pos, buf.data() + (8 - len), len); pos += len; } } template * = nullptr, std::enable_if_t<8 == sizeof(U)>* = nullptr> void write_unsigned(U uval) { size_t len = calc_len(uval); pos += len; char* ptr = line.data() + pos; while (uval >= 100) { ptr -= 2; memcpy(ptr, small[uval % 100].data(), 2); uval /= 100; } if (uval >= 10) { memcpy(ptr - 2, small[uval].data(), 2); } else { *(ptr - 1) = char('0' + uval); } } template < class U, std::enable_if_t::value>* = nullptr> void write_unsigned(U uval) { static std::array buf; size_t len = 0; while (uval > 0) { buf[len++] = char((uval % 10) + '0'); uval /= 10; } std::reverse(buf.begin(), buf.begin() + len); memcpy(line.data() + pos, buf.data(), len); pos += len; } void write_single(const std::string& s) { for (char c : s) write_single(c); } void write_single(const char* s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write_single(s[i]); } template void write_single(const std::vector& val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write_single(' '); write_single(val[i]); } } }; std::array, 100> Printer::small = [] { std::array, 100> table; for (int i = 0; i <= 99; i++) { table[i][1] = char('0' + (i % 10)); table[i][0] = char('0' + (i / 10 % 10)); } return table; }(); std::array Printer::tens = [] { std::array table; for (int i = 0; i < 20; i++) { table[i] = 1; for (int j = 0; j < i; j++) { table[i] *= 10; } } return table; }(); } // namespace yosupo #include namespace atcoder { template std::ostream& operator<<(std::ostream& os, const static_modint& x) { return os << x.val(); } template std::ostream& operator<<(std::ostream& os, const dynamic_modint& x) { return os << x.val(); } } // namespace atcoder namespace yosupo { template using static_modint = atcoder::static_modint; template using dynamic_modint = atcoder::dynamic_modint; using modint998244353 = atcoder::modint998244353; using modint1000000007 = atcoder::modint1000000007; using modint = atcoder::modint; } // namespace yosupo static_assert(__cplusplus >= 201703L, "C++17 or later"); #include #include namespace yosupo { struct llx4 { public: llx4() : d() {} llx4(long long x) : d(_mm256_set1_epi64x(x)) {} llx4(const __m256i& x) : d(x) {} llx4(const std::array& x) : d(_mm256_loadu_si256((__m256i*)x.data())) {} llx4(long long x0, long long x1, long long x2, long long x3) : d(_mm256_set_epi64x(x3, x2, x1, x0)) {} std::array to_array() const { alignas(32) std::array b; _mm256_store_si256((__m256i*)b.data(), d); return b; } long long at(int i) const { alignas(32) std::array b; _mm256_store_si256((__m256i*)b.data(), d); return b[i]; } void set(int i, long long x) { alignas(32) std::array b; _mm256_store_si256((__m256i*)b.data(), d); b[i] = x; d = _mm256_load_si256((__m256i*)b.data()); } llx4& operator+=(const llx4& rhs) { d = _mm256_add_epi64(d, rhs.d); return *this; } friend llx4 operator+(const llx4& lhs, const llx4& rhs) { return llx4(lhs) += rhs; } llx4& operator-=(const llx4& rhs) { d = _mm256_sub_epi64(d, rhs.d); return *this; } friend llx4 operator-(const llx4& lhs, const llx4& rhs) { return llx4(lhs) -= rhs; } __m256i raw() const { return d; } __m256i d; }; struct intx8 { public: intx8() : d() {} intx8(int x) : d(_mm256_set1_epi32(x)) {} intx8(const __m256i& x) : d(x) {} intx8(const std::array& x) : d(_mm256_loadu_si256((__m256i*)x.data())) {} intx8(int x0, int x1, int x2, int x3, int x4, int x5, int x6, int x7) : d(_mm256_set_epi32(x7, x6, x5, x4, x3, x2, x1, x0)) {} std::array to_array() const { alignas(32) std::array b; _mm256_store_si256((__m256i*)b.data(), d); return b; } int at(int i) const { alignas(32) std::array b; _mm256_store_si256((__m256i*)b.data(), d); return b[i]; } void set(int i, int x) { alignas(32) std::array b; _mm256_store_si256((__m256i*)b.data(), d); b[i] = x; d = _mm256_load_si256((__m256i*)b.data()); } intx8& operator+=(const intx8& rhs) { d = _mm256_add_epi32(d, rhs.d); return *this; } friend intx8 operator+(const intx8& lhs, const intx8& rhs) { return intx8(lhs) += rhs; } intx8& operator-=(const intx8& rhs) { d = _mm256_sub_epi32(d, rhs.d); return *this; } friend intx8 operator-(const intx8& lhs, const intx8& rhs) { return intx8(lhs) -= rhs; } std::pair mul(const intx8 rhs) const { __m256i x0246 = _mm256_mul_epi32(d, rhs.d); __m256i x1357 = _mm256_mul_epi32(_mm256_shuffle_epi32(d, 0xf5), _mm256_shuffle_epi32(rhs.d, 0xf5)); return {x0246, x1357}; } intx8& operator&=(const intx8& rhs) { d = _mm256_and_si256(d, rhs.d); return *this; } friend intx8 operator&(const intx8& lhs, const intx8& rhs) { return intx8(lhs) &= rhs; } intx8 operator>(const intx8& rhs) const { return _mm256_cmpgt_epi32(d, rhs.d); } intx8 operator<(const intx8& rhs) const { return rhs > *this; } bool test_all_zero() const { return _mm256_testz_si256(d, d) == 1; } intx8 sign() const { return *this < intx8(_mm256_setzero_si256()); } intx8 abs() const { return _mm256_abs_epi32(d); } std::pair split() const { return { llx4(((*this) & intx8(-1, 0, -1, 0, -1, 0, -1, 0)).d), llx4(_mm256_srli_epi64(d, 32)), }; } __m256i raw() const { return d; } __m256i d; }; } // namespace yosupo namespace yosupo { template intx8 montgomery_reduction(const llx4& x0246, const llx4& x1357) { static_assert(MOD > 0 && MOD % 2, "mod must be positive & odd"); static constexpr int nim = -(int)atcoder::internal::inv_gcd(MOD, 1LL << 32).second; __m256i km0246 = _mm256_mul_epu32(_mm256_mul_epu32(x0246.raw(), _mm256_set1_epi32(nim)), _mm256_set1_epi32(MOD)); __m256i km1357 = _mm256_mul_epu32(_mm256_mul_epu32(x1357.raw(), _mm256_set1_epi32(nim)), _mm256_set1_epi32(MOD)); llx4 z0246 = llx4(x0246) + llx4(km0246); llx4 z1357 = llx4(x1357) + llx4(km1357); return _mm256_blend_epi32(_mm256_shuffle_epi32(z0246.raw(), 0xf5), z1357.raw(), 0b10101010); } /* vectorized modint (by montgomery reduction) */ template struct modintx8 { static_assert(MOD % 2, "mod must be positive & odd"); static_assert(1 <= MOD && MOD <= (1 << 30) - 1, "mod range: [1, (1<<30) - 1]"); using mint = static_modint; static const int B = ((1LL << 32)) % MOD; static const int iB = atcoder::internal::inv_gcd(B, MOD).second; intx8 d; modintx8() : d(0) {} modintx8(const std::array& _d) { d = intx8(_d[0].val(), _d[1].val(), _d[2].val(), _d[3].val(), _d[4].val(), _d[5].val(), _d[6].val(), _d[7].val()); (*this) *= modintx8(B); } modintx8(mint x0, mint x1, mint x2, mint x3, mint x4, mint x5, mint x6, mint x7) : d(_mm256_set_epi32(x7.val(), x6.val(), x5.val(), x4.val(), x3.val(), x2.val(), x1.val(), x0.val())) { (*this) *= modintx8(B); } modintx8(mint x) : d(int((x * B).val())) {} mint at(int i) const { return mint(1ULL * d.at(i) * iB); } void set(int i, mint x) { d.set(i, (x * B).val()); } modintx8& operator+=(const modintx8& rhs) { d += rhs.d; d -= intx8(2 * MOD); d += intx8(2 * MOD) & d.sign(); return *this; } modintx8& operator-=(const modintx8& rhs) { d -= rhs.d; d += intx8(2 * MOD) & d.sign(); return *this; } modintx8& operator*=(const modintx8& rhs) { auto v = d.mul(rhs.d); d = montgomery_reduction(v.first, v.second); return *this; } friend modintx8 operator+(const modintx8& lhs, const modintx8& rhs) { return modintx8(lhs) += rhs; } friend modintx8 operator-(const modintx8& lhs, const modintx8& rhs) { return modintx8(lhs) -= rhs; } friend modintx8 operator*(const modintx8& lhs, const modintx8& rhs) { return modintx8(lhs) *= rhs; } template modintx8 neg() const { modintx8 w; w.d = (d - intx8(_mm256_blend_epi32(_mm256_setzero_si256(), _mm256_set1_epi32(2 * MOD), N))) .abs(); return w; } template modintx8 shuffle() const { modintx8 x; x.d.d = _mm256_shuffle_epi32(d.d, N); return x; } template modintx8 shufflex4() const { modintx8 x; x.d.d = _mm256_permute2x128_si256(d.d, d.d, N); return x; } std::array to_array() const { auto buf = (*this * modintx8(iB)).d; buf -= intx8(MOD) & (buf > intx8(MOD - 1)); auto v = buf.to_array(); std::array x; for (int i = 0; i < 8; i++) { x[i] = mint::raw(v[i]); } return x; } static modintx8 from_raw(const intx8& _d) { modintx8 x; x.d = _d; return x; } }; } // namespace yosupo #include #include #include namespace yosupo { template struct fft_info { using mint = static_modint; using mintx8 = modintx8; static constexpr int g = atcoder::internal::primitive_root; static constexpr int rank2 = atcoder::internal::bsf_constexpr(mint::mod() - 1); std::array root, iroot; // root[i]^(2^i) == 1, root[i] * iroot[i] == 1 std::array rate2, irate2; std::array rate2x; std::array rate3, irate3; std::array rate4, irate4; std::array rate4xi, irate4xi; // rate4xi[i][j] = rate4[i]^j fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } for (int i = 0; i <= rank2 - 2; i++) { rate2x[i] = mintx8(rate2[i]); } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 4; i++) { rate4[i] = root[i + 4] * prod; irate4[i] = iroot[i + 4] * iprod; prod *= iroot[i + 4]; iprod *= root[i + 4]; std::array buf, ibuf; for (int j = 0; j < 8; j++) { buf[j] = rate4[i].pow(j); ibuf[j] = irate4[i].pow(j); } rate4xi[i] = buf; irate4xi[i] = ibuf; } } } }; template void butterfly(std::vector>& _a) { int n = int(_a.size() * 8); using mint = static_modint; using mintx8 = modintx8; int h = internal::ceil_pow2(n); static const fft_info info; const mint imag = info.root[2]; assert(n >= 8 && n % 8 == 0); int n8 = n / 8; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed if (h % 2 == 0) { int p = n8 / 2; for (int i = 0; i < p; i++) { auto l = _a[i]; auto r = _a[i + p]; _a[i] = l + r; _a[i + p] = l - r; } len++; } while (len + 5 <= h) { int p = 1 << (h - len - 5); mintx8 rotx(1); auto imagx = mintx8(imag); imagx.d -= intx8(998244353) & (imagx.d > intx8(998244352)); for (int s = 0; s < (1 << len); s++) { auto rot2x = rotx * rotx; auto rot3x = rot2x * rotx; int offset = s << (h - len - 3); for (int i = 0; i < p; i++) { auto a0 = _a[i + offset + 0 * p]; auto a1 = _a[i + offset + 1 * p] * rotx; auto a2 = _a[i + offset + 2 * p] * rot2x; auto a3 = _a[i + offset + 3 * p] * rot3x; _a[i + offset + 0 * p] = (a0 + a2) + (a1 + a3); _a[i + offset + 1 * p] = (a0 + a2) - (a1 + a3); _a[i + offset + 2 * p] = (a0 - a2) + (a1 - a3) * imagx; _a[i + offset + 3 * p] = (a0 - a2) - (a1 - a3) * imagx; } rotx *= mintx8(info.rate3[bsf(~(unsigned int)(s))]); } len += 2; } { assert(len + 3 == h); mint e8 = info.root[3]; const mintx8 step1 = mintx8(1, 1, 1, 1, 1, e8, e8 * e8, e8 * e8 * e8); const mintx8 step2 = mintx8(1, 1, 1, imag, 1, 1, 1, imag); auto rotxi = mintx8(1); for (int s = 0; s < n8; s++) { mintx8 v = _a[s] * rotxi; v = (v.template neg<0b11110000>() + v.template shufflex4<0b01>()) * step1; v = (v.template neg<0b11001100>() + v.template shuffle<0b01001110>()) * step2; v = (v.template neg<0b10101010>() + v.template shuffle<0b10110001>()); _a[s] = v; rotxi *= info.rate4xi[bsf(~(unsigned int)(s))]; } len += 3; } } template void butterfly_inv(std::vector>& _a) { int n = int(_a.size() * 8); using mint = static_modint; using mintx8 = modintx8; int h = internal::ceil_pow2(n); static const fft_info info; assert(n >= 8 && n % 8 == 0); const mint iimag = info.iroot[2]; const mintx8 iimagx = iimag; int n8 = n / 8; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed { mint ie8 = info.iroot[3]; const mintx8 istep1 = mintx8(1, 1, 1, 1, 1, ie8, ie8 * ie8, ie8 * ie8 * ie8); const mintx8 istep2 = mintx8(1, 1, 1, iimag, 1, 1, 1, iimag); auto irotxi = mintx8(1); for (int s = 0; s < n8; s++) { auto v = _a[s]; v = (v.template neg<0b10101010>() + v.template shuffle<0b10110001>()) * istep2; v = (v.template neg<0b11001100>() + v.template shuffle<0b01001110>()) * istep1; v = (v.template neg<0b11110000>() + v.template shufflex4<0b01>()) * irotxi; _a[s] = v; irotxi *= info.irate4xi[bsf(~(unsigned int)(s))]; } len -= 3; } while (len >= 2) { int p = 1 << (h - len - 3); auto irotx = mintx8(1); for (int s = 0; s < (1 << (len - 2)); s++) { auto irot2x = irotx * irotx; auto irot3x = irot2x * irotx; int offset = s << (h - len - 1); for (int i = 0; i < p; i++) { auto a0 = _a[i + offset + 0 * p]; auto a1 = _a[i + offset + 1 * p]; auto a2 = _a[i + offset + 2 * p]; auto a3 = _a[i + offset + 3 * p]; auto a0a1 = a0 + a1; auto a0na1 = a0 - a1; auto a2a3 = a2 + a3; auto a2na3iimag = (a2 - a3) * iimagx; _a[i + offset + 0 * p] = a0a1 + a2a3; _a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irotx; _a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2x; _a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3x; } irotx *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } if (len == 1) { int p = 1 << (h - 4); for (int i = 0; i < p; i++) { auto l = _a[i]; auto r = _a[i + p]; _a[i] = l + r; _a[i + p] = l - r; } len--; } } template std::vector> convolution(std::vector> a, std::vector> b) { int n = int(a.size()); int m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m); a.resize(z); butterfly(a); b.resize(z); butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } butterfly_inv(a); a.resize(n + m); modintx8 iz = static_modint(8 * z).inv(); for (int i = 0; i < n + m; i++) a[i] *= iz; return a; } template void butterfly(std::vector>& a) { using mint = static_modint; using mintx8 = modintx8; int n = int(a.size()); int n2 = (n + 7) / 8; std::vector a2(n2); for (int i = 0; i < n2; i++) { std::array v; for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { v[j] = a[i * 8 + j]; } a2[i] = v; } butterfly(a2); for (int i = 0; i < n2; i++) { auto v = a2[i].to_array(); for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { a[i * 8 + j] = v[j]; } } } template void butterfly_inv(std::vector>& a) { using mint = static_modint; using mintx8 = modintx8; int n = int(a.size()); int n2 = (n + 7) / 8; std::vector a2(n2); for (int i = 0; i < n2; i++) { std::array v; for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { v[j] = a[i * 8 + j]; } a2[i] = v; } butterfly_inv(a2); for (int i = 0; i < n2; i++) { auto v = a2[i].to_array(); for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { a[i * 8 + j] = v[j]; } } } } // namespace yosupo using namespace yosupo; const int mod = 120586241; using mint = static_modint; const mint mg = atcoder::internal::primitive_root; const mint g10 = mg.pow((mod - 1) / 10); const mint ig10 = g10.inv(); const int tens[6] = { 1, 10, 100, 1000, 10000, 100000 }; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } template using V = vector; template using VV = V>; #ifdef LOCAL ostream& operator<<(ostream& os, __int128_t x) { if (x < 0) { os << "-"; x *= -1; } if (x == 0) { return os << "0"; } string s; while (x) { s += char(x % 10 + '0'); x /= 10; } reverse(s.begin(), s.end()); return os << s; } ostream& operator<<(ostream& os, __uint128_t x) { if (x == 0) { return os << "0"; } string s; while (x) { s += char(x % 10 + '0'); x /= 10; } reverse(s.begin(), s.end()); return os << s; } template ostream& operator<<(ostream& os, const pair& p); template ostream& operator<<(ostream& os, const V& v); template ostream& operator<<(ostream& os, const deque& v); template ostream& operator<<(ostream& os, const array& a); template ostream& operator<<(ostream& os, const set& s); template ostream& operator<<(ostream& os, const map& m); template ostream& operator<<(ostream& os, const pair& p) { return os << "P(" << p.first << ", " << p.second << ")"; } template ostream& operator<<(ostream& os, const V& v) { os << "["; bool f = false; for (auto d : v) { if (f) os << ", "; f = true; os << d; } return os << "]"; } template ostream& operator<<(ostream& os, const deque& v) { os << "["; bool f = false; for (auto d : v) { if (f) os << ", "; f = true; os << d; } return os << "]"; } template ostream& operator<<(ostream& os, const array& a) { os << "["; bool f = false; for (auto d : a) { if (f) os << ", "; f = true; os << d; } return os << "]"; } template ostream& operator<<(ostream& os, const set& s) { os << "{"; bool f = false; for (auto d : s) { if (f) os << ", "; f = true; os << d; } return os << "}"; } template ostream& operator<<(ostream& os, const multiset& s) { os << "{"; bool f = false; for (auto d : s) { if (f) os << ", "; f = true; os << d; } return os << "}"; } template ostream& operator<<(ostream& os, const map& s) { os << "{"; bool f = false; for (auto p : s) { if (f) os << ", "; f = true; os << p.first << ": " << p.second; } return os << "}"; } struct PrettyOS { ostream& os; bool first; template auto operator<<(T&& x) { if (!first) os << ", "; first = false; os << x; return *this; } }; template void dbg0(T&&... t) { (PrettyOS{cerr, true} << ... << t); } #define dbg(...) \ do { \ cerr << __LINE__ << " : " << #__VA_ARGS__ << " = "; \ dbg0(__VA_ARGS__); \ cerr << endl; \ } while (false); #else #define dbg(...) #endif Scanner sc = Scanner(stdin); Printer pr = Printer(stdout); V fft10(const V& a, mint e) { assert(int(a.size()) == 10); V b(10); mint base = 1; for (int i = 0; i < 10; i++) { mint freq = 1; for (int j = 0; j < 10; j++) { b[i] += a[j] * freq; freq *= base; } base *= e; } return b; } V conv_naive(int k, const V& a, const V& b) { int n = tens[k]; assert(int(a.size()) == n); assert(int(b.size()) == n); V c(n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { bool ok = true; for (int h = 0; h < k; h++) { int x = i / tens[h] % 10; int y = j / tens[h] % 10; if (x + y >= 10) { ok = false; break; } } if (ok) { c[i + j] += a[i] * b[j]; } } } return c; } V multi_conv(int k, const V& a, const V& b) { auto _chi = [&](int x) { int sum = 0; for (int i = 0; i < k - 1; i++) { sum += x / tens[i + 1]; } return sum; }; int N = tens[k]; V chi(N); for (int i = 0; i < N; i++) { chi[i] = _chi(i); } int S = 1; while (S < 2 * N) S *= 2; vector> f(k, vector(S)), g(k, vector(S)); for (int i = 0; i < N; i++) { f[chi[i] % k][i] = a[i]; } for (int i = 0; i < N; i++) { g[chi[i] % k][i] = b[i]; } for (int j = 0; j < k; j++) { butterfly(f[j]); butterfly(g[j]); } vector> fg(k, vector(S)); for (int l = 0; l < k; l++) { for (int r = 0; r < k; r++) { int lr = (l + r >= k) ? (l + r - k) : l + r; for (int i = 0; i < S; i++) { fg[lr][i] += f[l][i] * g[r][i]; } } } for (int j = 0; j < k; j++) { butterfly_inv(fg[j]); } V c(N); const mint iS = mint(S).inv(); for (int i = 0; i < N; i++) { c[i] = fg[chi[i] % k][i] * iS; } return c; } V pow_naive(int k, V a, ll m) { int n = tens[k]; V res(n); res[0] = 1; while (m) { if (m % 2) { res = multi_conv(k, res, a); } a = multi_conv(k, a, a); m /= 2; } return res; } V pow2(int k, V a, ll m) { assert(a[0] == mint(1)); a[0] = 0; int n = tens[k]; V b(n), c(n); b[0] = 1; mint choose = 1; for (int h = 0; h <= k * 9; h++) { if (h) choose = choose * (m - (h - 1)) / h; // choose = C(m, h) for (int i = 0; i < n; i++) { c[i] += b[i] * choose; } b = multi_conv(k, b, a); } for (auto x : b) assert(x == mint(0)); return c; } V pow(int k, V a, ll m) { if (k == 0) { return {a[0].pow(m)}; } if (a[0] == 0) { return pow_naive(k, a, min(64LL, m)); } mint a0 = a[0]; mint ia0 = a0.inv(); for (auto& x: a) { x *= ia0; } //a = pow_naive(k, a, m); a = pow2(k, a, m); mint a0m = a0.pow(m); for (auto& x: a) { x *= a0m; } return a; } int main() { int n2, k, t; ll m; sc.read(n2, k, m, t); int n = tens[k]; V a(n); for (int i = 0; i < n2; i++) { int x; sc.read(x); a[x] += 1; } for (int h = t; h < k; h++) { for (int i = 0; i < n; i++) { if (i / tens[h] % 10) continue; V b(10); for (int j = 0; j < 10; j++) { b[j] = a[i + tens[h] * j]; } b = fft10(b, g10); for (int j = 0; j < 10; j++) { a[i + tens[h] * j] = b[j]; } } } for (int i = 0; i < tens[k - t]; i++) { // convolute [TEN(t) * i .. TEN(t) * (i + 1)] V c(a.begin() + tens[t] * i, a.begin() + tens[t] * (i + 1)); c = pow(t, c, m); copy_n(c.begin(), tens[t], a.begin() + tens[t] * i); } for (int h = t; h < k; h++) { for (int i = 0; i < n; i++) { if (i / tens[h] % 10) continue; V b(10); for (int j = 0; j < 10; j++) { b[j] = a[i + tens[h] * j]; } b = fft10(b, ig10); for (int j = 0; j < 10; j++) { a[i + tens[h] * j] = b[j]; } } } for (int i = 0; i < n; i++) { a[i] /= mint(tens[k - t]); pr.writeln(a[i].val()); } return 0; }