#include using namespace std; using int64 = long long; //const int mod = 1e9 + 7; const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in: v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e: t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } /** * @brief 何でもできるLCT */ template< typename LInfo > struct SplayTree { struct Node { Node *l, *r, *p; LInfo info; explicit Node(const LInfo &info) : info(info), l(nullptr), r(nullptr), p(nullptr) {} }; const LInfo e; SplayTree() : e(LInfo()) {} using NP = Node *; void rotr(NP t) { NP x = t->p, y = x->p; if((x->l = t->r)) t->r->p = x; t->r = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; } } void rotl(NP t) { NP x = t->p, y = x->p; if((x->r = t->l)) t->l->p = x; t->l = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; } } const LInfo &get_info(NP t) { return t ? t->info : e; } void update(NP t) { t->info.update(get_info(t->l), get_info(t->r)); } NP get_right(NP t) { while(t->r) t = t->r; return t; } NP alloc(const LInfo &v) { auto t = new Node(v); update(t); return t; } void splay(NP t) { while(t->p) { NP q = t->p; if(!q->p) { if(q->l == t) rotr(t); else rotl(t); } else { NP r = q->p; if(r->l == q) { if(q->l == t) rotr(q), rotr(t); else rotl(t), rotr(t); } else { if(q->r == t) rotl(q), rotl(t); else rotr(t), rotl(t); } } } } NP insert(NP t, const LInfo &v) { if(not t) { t = alloc(v); return t; } else { NP cur = get_right(t), z = alloc(v); splay(cur); z->p = cur; cur->r = z; update(cur); splay(z); return z; } } NP erase(NP t) { splay(t); NP x = t->l, y = t->r; delete t; if(not x) { t = y; if(t) t->p = nullptr; } else if(not y) { t = x; t->p = nullptr; } else { x->p = nullptr; t = get_right(x); splay(t); t->r = y; y->p = t; update(t); } return t; } }; template< template< typename > typename _Info, typename _LInfo > struct SuperLinkCutTree { using LInfo = _LInfo; using Info = _Info< LInfo >; private: struct Node { Node *l, *r, *p; Info info; typename SplayTree< LInfo >::Node *light, *belong; bool is_root() const { return not p or (p->l != this and p->r != this); } explicit Node(const Info &info) : info(info), l(nullptr), r(nullptr), p(nullptr), light(nullptr), belong(nullptr) {} }; public: using NP = Node *; SplayTree< LInfo > splay_tree; private: const Info e; void rotr(NP t) { NP x = t->p, y = x->p; if((x->l = t->r)) t->r->p = x; t->r = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; update(y); } } void rotl(NP t) { NP x = t->p, y = x->p; if((x->r = t->l)) t->l->p = x; t->l = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; update(y); } } public: SuperLinkCutTree() : e{Info()}, splay_tree{} {} const Info &get_info(NP t) { return t ? t->info : e; } void update(NP t) { t->info.update(get_info(t->l), get_info(t->r), splay_tree.get_info(t->light)); } void splay(NP t) { { NP rot = t; while(not rot->is_root()) rot = rot->p; t->belong = rot->belong; if(t != rot) rot->belong = nullptr; } while(not t->is_root()) { NP q = t->p; if(q->is_root()) { if(q->l == t) rotr(t); else rotl(t); } else { NP r = q->p; if(r->l == q) { if(q->l == t) rotr(q), rotr(t); else rotl(t), rotr(t); } else { if(q->r == t) rotl(q), rotl(t); else rotr(t), rotl(t); } } } } NP expose(NP t) { NP rp = nullptr; for(NP cur = t; cur; cur = cur->p) { splay(cur); if(cur->r) { cur->light = splay_tree.insert(cur->light, cur->r->info.link()); cur->r->belong = cur->light; } cur->r = rp; if(cur->r) { splay_tree.splay(cur->r->belong); cur->light = splay_tree.erase(cur->r->belong); } update(cur); rp = cur; } splay(t); return rp; } void link(NP child, NP parent) { expose(parent); expose(child); child->p = parent; parent->r = child; update(parent); } void cut(NP child) { expose(child); NP parent = child->l; child->l = nullptr; parent->p = nullptr; update(child); } NP alloc(const Info &info) { NP t = new Node(info); update(t); return t; } bool is_connected(NP u, NP v) { expose(u), expose(v); return u == v or u->p; } vector< NP > build(vector< Info > &vs) { vector< NP > nodes(vs.size()); for(int i = 0; i < (int) vs.size(); i++) { nodes[i] = alloc(vs[i]); } return nodes; } NP lca(NP u, NP v) { if(not is_connected(u, v)) return nullptr; expose(u); return expose(v); } void set_key(NP t, const Info &v) { expose(t); t->info = move(v); update(t); } const Info &query(NP u) { expose(u); return get_info(u); } Info query_subtree(NP u) { expose(u); NP l = u->l; u->l = nullptr; update(u); auto ret = u->info; u->l = l; update(u); return ret; } }; using T = int; // Light-edge の情報 struct LInfo { T left, ans; T p_left, p_ans; // 単位元(キーの値はアクセスしないので未初期化でもよい LInfo() : p_left(-1), p_ans(-1) {} // 初期化 LInfo(T left, T ans) : left(left), ans(ans) {} // l, r は Splay-tree の子 (原理上、各ノード区別はない) void update(const LInfo &l, const LInfo &r) { p_left = left, p_ans = ans; if(chmax(p_left, l.p_left)) p_ans = l.p_ans; if(chmax(p_left, r.p_left)) p_ans = r.p_ans; } }; // Heavy-edge の情報 template< typename LInfo > struct Info { T v, idx; T p_ans, p_light, p_left; T c_ans, c_light, c_left; // 単位元(キーの値はアクセスしないので未初期化でもよい Info() : p_ans(-1), p_light(-1), p_left(-1), c_ans(-1), c_light(-1), c_left(-1) {} // 初期化 Info(T idx, T v) : v(v), idx(idx) {} // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子 void update(const Info &p, const Info &c, const LInfo &l) { p_left = ~p.p_left ? p.p_left : v; if(p.p_light < v) { if(l.p_left < c.p_left) { p_light = c.p_light; p_ans = c.p_ans; } else if(~l.p_left) { p_light = ~c.p_left ? inf : l.p_left; p_ans = l.p_ans; } else { p_light = -1; p_ans = idx; } } else { p_light = inf; p_ans = p.p_ans; } c_left = ~c.c_left ? c.c_left : v; if(c.c_light < v) { if(l.p_left < p.c_left) { c_light = p.c_light; c_ans = p.c_ans; } else if(~l.p_left) { c_light = ~p.c_left ? inf : l.p_left; c_ans = l.p_ans; } else { c_light = -1; c_ans = idx; } } else { c_light = inf; c_ans = c.c_ans; } } // 親と light-edge で繋げる LInfo link() const { return LInfo(p_left, p_ans); } }; using LCT = SuperLinkCutTree< Info, LInfo >; /** * @brief Scanner(高速入力) */ struct Scanner { public: explicit Scanner(FILE *fp) : fp(fp) {} template< typename T, typename... E > void read(T &t, E &... e) { read_single(t); read(e...); } private: static constexpr size_t line_size = 1 << 16; static constexpr size_t int_digits = 20; char line[line_size + 1] = {}; FILE *fp = nullptr; char *st = line; char *ed = line; void read() {} static inline bool is_space(char c) { return c <= ' '; } void reread() { ptrdiff_t len = ed - st; memmove(line, st, len); char *tmp = line + len; ed = tmp + fread(tmp, 1, line_size - len, fp); *ed = 0; st = line; } void skip_space() { while(true) { if(st == ed) reread(); while(*st && is_space(*st)) ++st; if(st != ed) return; } } template< typename T, enable_if_t< is_integral< T >::value, int > = 0 > void read_single(T &s) { skip_space(); if(st + int_digits >= ed) reread(); bool neg = false; if(is_signed< T >::value && *st == '-') { neg = true; ++st; } typename make_unsigned< T >::type y = *st++ - '0'; while(*st >= '0') { y = 10 * y + *st++ - '0'; } s = (neg ? -y : y); } template< typename T, enable_if_t< is_same< T, string >::value, int > = 0 > void read_single(T &s) { s = ""; skip_space(); while(true) { char *base = st; while(*st && !is_space(*st)) ++st; s += string(base, st); if(st != ed) return; reread(); } } template< typename T > void read_single(vector< T > &s) { for(auto &d: s) read(d); } }; /** * @brief Printer(高速出力) */ struct Printer { public: explicit Printer(FILE *fp) : fp(fp) {} ~Printer() { flush(); } template< bool f = false, typename T, typename... E > void write(const T &t, const E &... e) { if(f) write_single(' '); write_single(t); write< true >(e...); } template< typename... T > void writeln(const T &...t) { write(t...); write_single('\n'); } void flush() { fwrite(line, 1, st - line, fp); st = line; } private: FILE *fp = nullptr; static constexpr size_t line_size = 1 << 16; static constexpr size_t int_digits = 20; char line[line_size + 1] = {}; char small[32] = {}; char *st = line; template< bool f = false > void write() {} void write_single(const char &t) { if(st + 1 >= line + line_size) flush(); *st++ = t; } template< typename T, enable_if_t< is_integral< T >::value, int > = 0 > void write_single(T s) { if(st + int_digits >= line + line_size) flush(); if(s == 0) { write_single('0'); return; } if(s < 0) { write_single('-'); s = -s; } char *mp = small + sizeof(small); typename make_unsigned< T >::type y = s; size_t len = 0; while(y > 0) { *--mp = y % 10 + '0'; y /= 10; ++len; } memmove(st, mp, len); st += len; } void write_single(const string &s) { for(auto &c: s) write_single(c); } void write_single(const char *s) { while(*s != 0) write_single(*s++); } template< typename T > void write_single(const vector< T > &s) { for(size_t i = 0; i < s.size(); i++) { if(i) write_single(' '); write_single(s[i]); } } }; int main() { Scanner in(stdin); Printer out(stdout); int N, Q; in.read(N); vector< int > A(N); LCT lct; vector< LCT::NP > vs(N); for(int i = 0; i < N; i++) { A[i] = i; vs[i] = lct.alloc(Info< LInfo >(i + 1, A[i])); } vector< vector< int > > g(N); for(int i = 1; i < N; i++) { int a, b; in.read(a, b); --a, --b; g[a].emplace_back(b); g[b].emplace_back(a); } MFP([&](auto dfs, int idx, int par) -> void { for(auto to: g[idx]) { if(to != par) { lct.link(vs[to], vs[idx]); dfs(to, idx); } } })(0, -1); in.read(Q); int x = 0; while(Q--) { int u, v; in.read(u, v); --u, --v; u += x; v += x; u %= N; v %= N; swap(A[u], A[v]); lct.set_key(vs[v], Info< LInfo >(v + 1, A[v])); lct.set_key(vs[u], Info< LInfo >(u + 1, A[u])); out.writeln(x = lct.query(vs[u]).c_ans); } }