#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct LazySegmentTree { using Monoid = typename T::Monoid; using OperatorMonoid = typename T::OperatorMonoid; LazySegmentTree(int n) : LazySegmentTree(std::vector(n, T::m_id())) {} LazySegmentTree(const std::vector &a) : n(a.size()) { while ((1 << height) < n) ++height; p2 = 1 << height; lazy.assign(p2, T::o_id()); dat.assign(p2 << 1, T::m_id()); for (int i = 0; i < n; ++i) dat[i + p2] = a[i]; for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); } void set(int idx, const Monoid val) { idx += p2; for (int i = height; i > 0; --i) propagate(idx >> i); dat[idx] = val; for (int i = 1; i <= height; ++i) { int current_idx = idx >> i; dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]); } } void apply(int idx, const OperatorMonoid val) { idx += p2; for (int i = height; i > 0; --i) propagate(idx >> i); dat[idx] = T::apply(dat[idx], val); for (int i = 1; i <= height; ++i) { int current_idx = idx >> i; dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]); } } void apply(int left, int right, const OperatorMonoid val) { if (right <= left) return; left += p2; right += p2; int left_ctz = __builtin_ctz(left); for (int i = height; i > left_ctz; --i) propagate(left >> i); int right_ctz = __builtin_ctz(right); for (int i = height; i > right_ctz; --i) propagate(right >> i); for (int l = left, r = right; l < r; l >>= 1, r >>= 1) { if (l & 1) sub_apply(l++, val); if (r & 1) sub_apply(--r, val); } for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); } Monoid get(int left, int right) { if (right <= left) return T::m_id(); left += p2; right += p2; int left_ctz = __builtin_ctz(left); for (int i = height; i > left_ctz; --i) propagate(left >> i); int right_ctz = __builtin_ctz(right); for (int i = height; i > right_ctz; --i) propagate(right >> i); Monoid l_res = T::m_id(), r_res = T::m_id(); for (; left < right; left >>= 1, right >>= 1) { if (left & 1) l_res = T::m_merge(l_res, dat[left++]); if (right & 1) r_res = T::m_merge(dat[--right], r_res); } return T::m_merge(l_res, r_res); } Monoid operator[](const int idx) { int node = idx + p2; for (int i = height; i > 0; --i) propagate(node >> i); return dat[node]; } template int find_right(int left, G g) { if (left >= n) return n; left += p2; for (int i = height; i > 0; --i) propagate(left >> i); Monoid val = T::m_id(); do { while (!(left & 1)) left >>= 1; Monoid nx = T::m_merge(val, dat[left]); if (!g(nx)) { while (left < p2) { propagate(left); left <<= 1; nx = T::m_merge(val, dat[left]); if (g(nx)) { val = nx; ++left; } } return left - p2; } val = nx; ++left; } while (__builtin_popcount(left) > 1); return n; } template int find_left(int right, G g) { if (right <= 0) return -1; right += p2; for (int i = height; i > 0; --i) propagate((right - 1) >> i); Monoid val = T::m_id(); do { --right; while (right > 1 && (right & 1)) right >>= 1; Monoid nx = T::m_merge(dat[right], val); if (!g(nx)) { while (right < p2) { propagate(right); right = (right << 1) + 1; nx = T::m_merge(dat[right], val); if (g(nx)) { val = nx; --right; } } return right - p2; } val = nx; } while (__builtin_popcount(right) > 1); return -1; } private: int n, p2, height = 0; std::vector dat; std::vector lazy; void sub_apply(int idx, const OperatorMonoid &val) { dat[idx] = T::apply(dat[idx], val); if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val); } void propagate(int idx) { // assert(1 <= idx && idx < p2); sub_apply(idx << 1, lazy[idx]); sub_apply((idx << 1) + 1, lazy[idx]); lazy[idx] = T::o_id(); } }; namespace monoid { template struct RangeMinimumAndUpdateQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return std::numeric_limits::max(); } static constexpr OperatorMonoid o_id() { return std::numeric_limits::max(); } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; } }; template struct RangeMaximumAndUpdateQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return std::numeric_limits::lowest(); } static constexpr OperatorMonoid o_id() { return std::numeric_limits::lowest(); } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; } }; template struct RangeMinimumAndAddQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return Inf; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; } }; template struct RangeMaximumAndAddQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return -Inf; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; } }; template struct RangeSumAndUpdateQuery { using Monoid = struct { T sum; int len; }; using OperatorMonoid = T; static std::vector init(int n) { return std::vector(n, Monoid{0, 1}); } static constexpr Monoid m_id() { return {0, 0}; } static constexpr OperatorMonoid o_id() { return std::numeric_limits::max(); } static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; } }; template struct RangeSumAndAddQuery { using Monoid = struct { T sum; int len; }; using OperatorMonoid = T; static std::vector init(int n) { return std::vector(n, Monoid{0, 1}); } static constexpr Monoid m_id() { return {0, 0}; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; } }; } // monoid int main() { struct S { using Monoid = pair; using OperatorMonoid = int; static constexpr Monoid m_id() { return {INF, 0}; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid& a, const Monoid& b) { if (a.first < b.first) { return a; } else if (a.first > b.first) { return b; } else { return {a.first, a.second + b.second}; } } static OperatorMonoid o_merge(const OperatorMonoid& a, const OperatorMonoid& b) { return a + b; } static Monoid apply(Monoid a, const OperatorMonoid& b) { a.first += b; return a; } }; int n; cin >> n; vector a(n), b(n); REP(i, n) cin >> a[i]; REP(i, n) cin >> b[i]; map> pos_a, pos_b; for (int i = n - 1; i >= 0; --i) { pos_a[a[i]].emplace_back(i); pos_b[b[i]].emplace_back(i); } LazySegmentTree seg(vector(n, S::Monoid{0, 1})); for (const auto [v, poss] : pos_a) { int l = poss.back(), r = (pos_b.count(v) ? pos_b[v].back() : n); if (l > r) swap(l, r); seg.apply(l, r, 1); } for (const auto [v, poss] : pos_b) { if (!pos_a.count(v)) seg.apply(poss.back(), n, 1); } ll ans = 0; REP(i, n) { // REP(i, n) cerr << '{' << seg[i].first << ',' << seg[i].second << '}' << " \n"[i + 1 == n]; const auto [mn, cnt] = seg.get(i, n); if (mn == 0) ans += cnt; if (a[i] != b[i]) { pos_a[a[i]].pop_back(); if (pos_a[a[i]].empty()) pos_a.erase(a[i]); if (pos_b.count(a[i])) { int l = pos_b[a[i]].back(); seg.apply(i, l, -1); int r = (pos_a.count(a[i]) ? pos_a[a[i]].back() : n); if (l > r) swap(l, r); seg.apply(l, r, 1); } else { seg.apply(i, n, -1); if (pos_a.count(a[i])) seg.apply(pos_a[a[i]].back(), n, 1); } pos_b[b[i]].pop_back(); if (pos_b[b[i]].empty()) pos_b.erase(b[i]); if (pos_a.count(b[i])) { int l = pos_a[b[i]].back(); seg.apply(i, l, -1); int r = (pos_b.count(b[i]) ? pos_b[b[i]].back() : n); if (l > r) swap(l, r); seg.apply(l, r, 1); } else { seg.apply(i, n, -1); if (pos_b.count(b[i])) seg.apply(pos_b[b[i]].back(), n, 1); } } else { pos_a[a[i]].pop_back(); if (pos_a[a[i]].empty()) pos_a.erase(a[i]); pos_b[b[i]].pop_back(); if (pos_b[b[i]].empty()) pos_b.erase(b[i]); if (pos_a.count(a[i]) || pos_b.count(b[i])) { int l = (pos_a.count(a[i]) ? pos_a[a[i]].back() : n), r = (pos_b.count(b[i]) ? pos_b[b[i]].back() : n); if (l > r) swap(l, r); seg.apply(l, r, 1); } } } // int valid_seg = 0; // REP(l, n) FOR(r, l, n) { // set as, bs; // FOR(i, l, r + 1) { // as.emplace(a[i]); // bs.emplace(b[i]); // } // valid_seg += as == bs; // } // cout << valid_seg << ' '; // assert(valid_seg == ans); cout << ans << '\n'; return 0; }