#line 2 "cpplib/util/template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC target("avx2") #include using namespace std; struct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout< vec; typedef vector> mat; typedef vector>> mat3; typedef vector svec; typedef vector> smat; templateusing V=vector; templateusing VV=V>; templateinline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<inline void output2(T t){for(auto i:t)output(i);} templateinline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?" ":"")<inline void debug2(T t){for(auto i:t)debug(i);} #define loop(n) for(long long _=0;_<(long long)(n);++_) #define _overload4(_1,_2,_3,_4,name,...) name #define __rep(i,a) repi(i,0,a,1) #define _rep(i,a,b) repi(i,a,b,1) #define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c) #define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__) #define _overload3_rev(_1,_2,_3,name,...) name #define _rep_rev(i,a) repi_rev(i,0,a) #define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i) #define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__) // #define rep(i,...) for(auto i:range(__VA_ARGS__)) // #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__))) // #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i) // #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i) // #define irep(i) for(lint i=0;;++i) // inline vector range(long long n){if(n<=0)return vector();vectorv(n);iota(v.begin(),v.end(),0LL);return v;} // inline vector range(long long a,long long b){if(b<=a)return vector();vectorv(b-a);iota(v.begin(),v.end(),a);return v;} // inline vector range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector();vectorv((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;} // templateinline T reversed(T v){reverse(v.begin(),v.end());return v;} #define all(n) begin(n),end(n) templatebool chmin(T& s,const E& t){bool res=s>t;s=min(s,t);return res;} templatebool chmax(T& s,const E& t){bool res=s(s,t);return res;} const string ds="DRUL"; const vector dx={1,0,-1,0,1,1,-1,-1}; const vector dy={0,1,0,-1,1,-1,1,-1}; #define SUM(v) accumulate(all(v),0LL) #if __cplusplus>=201703L templateauto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector(arg,x);else return vector(arg,make_vector(x,args...));} #endif #define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__})) #define bit(n,a) ((n>>a)&1) vector> __MAKE_MAT__(vector v){if(v.empty())return vector>(1,vector());long long n=v.back();v.pop_back();vector> ret;vector> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i>; templateusing graph_w=vector>>; templateostream& operator<<(ostream& out,pairv){out<<"("<=201703L constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;} #endif templatepair& operator+=(pair&s,const pair&t){s.first+=t.first;s.second+=t.second;return s;} templatepair& operator-=(pair&s,const pair&t){s.first-=t.first;s.second-=t.second;return s;} templatepair operator+(const pair&s,const pair&t){auto res=s;return res+=t;} templatepair operator-(const pair&s,const pair&t){auto res=s;return res-=t;} // 128*1024*1024 #define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp":"=b"(stack_extend_origin_memory_):"a"((char*)stack_extend_memory_+(size)-1024)); #define END_STACK_EXTEND asm volatile("mov %%rax, %%rsp"::"a"(stack_extend_origin_memory_));free(stack_extend_memory_); #line 2 "cpplib/math/ACL_modint998244353.hpp" #include #include #include #ifdef _MSC_VER #include #endif #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder using mint=atcoder::modint998244353; #line 4 "cpplib/math/ACL_modint_base.hpp" std::ostream& operator<<(std::ostream& lhs, const mint& rhs) noexcept { lhs << rhs.val(); return lhs; } std::istream& operator>>(std::istream& lhs,mint& rhs) noexcept { long long x; lhs >> x; rhs=x; return lhs; } int MOD_NOW=-1; int sz=0; std::vectorfact_table,fact_inv_table; void update(int x){ if(MOD_NOW!=mint::mod()||sz==0){ fact_table.assign(1,1); fact_inv_table.assign(1,1); sz=1; MOD_NOW=mint::mod(); } while(sz<=x){ fact_table.resize(sz*2); fact_inv_table.resize(sz*2); for(int i=sz;i=sz;--i){ fact_inv_table[i]=fact_inv_table[i+1]*(i+1); } sz*=2; } } inline mint fact(int x){ assert(x>=0); update(x); return fact_table[x]; } inline mint fact_inv(int x){ assert(x>=0); update(x); return fact_inv_table[x]; } inline mint comb(int x,int y){ if(x<0||x struct maybe{ bool _is_none; T val; maybe():_is_none(true){} maybe(T val):_is_none(false),val(val){} T unwrap()const{ assert(!_is_none); return val; } T unwrap_or(T e)const{ return _is_none?e:val; } bool is_none()const{return _is_none;} bool is_some()const{return !_is_none;} }; template auto expand(F op){ return [&op](const maybe& __s,const maybe& __t)->maybe{ if(__s.is_none())return __t; if(__t.is_none())return __s; return maybe(op(__s.unwrap(),__t.unwrap())); }; } #line 3 "cpplib/segment_tree/lazy_segment_tree.hpp" template class lazy_segment_tree{ using i64=long long; i64 n; i64 sz; struct node; using np=node*; struct node{ maybe val=maybe(); maybe lazy=maybe(); np lch=nullptr,rch=nullptr; node(){} }; np root=new node(); maybe fix(i64 a,E x,i64 l,i64 r,np t){ auto f=expand(_f); eval(t,l,r); //区間外 if(r<=a||aval; //全部区間内 if(l==a&&r==a+1){ eval(t,l,r); t->val=x; return t->val; } //一部区間内 return t->val=f(fix(a,x,l,(l+r)/2,t->lch),fix(a,x,(l+r)/2,r,t->rch)); } maybe update(i64 a,i64 b,E x,i64 l,i64 r,np t){ auto f=expand(_f); eval(t,l,r); //区間外 if(r<=a||b<=l)return t->val; //全部区間内 if(a<=l&&r<=b){ t->lazy=x; eval(t,l,r); return t->val; } //一部区間内 return t->val=f(update(a,b,x,l,(l+r)/2,t->lch),update(a,b,x,(l+r)/2,r,t->rch)); } maybe get(i64 a,i64 b,i64 l,i64 r,np t){ auto f=expand(_f); eval(t,l,r); //区間外 if(r<=a||b<=l)return maybe(); //全部区間内 if(a<=l&&r<=b)return t->val; //一部区間内 return f(get(a,b,l,(l+r)/2,t->lch),get(a,b,(l+r)/2,r,t->rch)); } void eval(np t,i64 l,i64 r){ auto g=expand(_g); if(r-l>1){ if(!t->lch)t->lch=new node(); if(!t->rch)t->rch=new node(); t->lch->lazy=g(t->lch->lazy,t->lazy); t->rch->lazy=g(t->rch->lazy,t->lazy); } t->val=h(t->val,t->lazy,l,r); t->lazy=maybe(); } template i64 lower_bound_right(maybe now,np t,Less op,i64 l,i64 r){ auto f=expand(_f); eval(t,l,r); if(t->lch)eval(t->lch,l,(l+r)/2); if(t->rch)eval(t->rch,(l+r)/2,r); const auto p=t->rch?f(t->rch->val,now):now; if(r-l==1){ return 0; } if(!op(f(t->val,now))){ return r-l; } if(op(p)){ return lower_bound_right(now,t->rch,op,(l+r)/2,r); }else{ return (r-l)/2+lower_bound_right(p,t->lch,op,l,(l+r)/2); } } F _f;G _g;H _h; maybe h(const maybe&s,const maybe&t,i64 l,i64 r){ if(t.is_none())return s; else return maybe(_h(s,t.unwrap(),l,r)); } public: lazy_segment_tree(i64 sz,F f=F(),G g=G(),H h=H()):n(1),sz(sz),_f(f),_g(g),_h(h){while(n get(i64 a,i64 b){return get(a,b,0,n,root);} template i64 lower_bound_right(Less op){ return n-lower_bound_right(maybe(),root,op,0,n); } }; #line 4 "main.cpp" int main(){ lint n; cin>>n; vector a(n),b(n); rep(i,n)cin>>a[i]; rep(i,n)cin>>b[i]; rep(i,n)a[i]--; rep(i,n)b[i]--; int k = std::sqrt(n), qq = (n + k - 1) / k; vector>p(400000),q(400000); rep(i,n){ p[a[i]].emplace_back(i); q[b[i]].emplace_back(i); } vectorbukket(qq); vectorbukket_count(qq); vectorcount(n); lint res=0; auto add=[&](int l,int r,int val)->void{ for (; l < r && l % k;l++){ if(count[l]==0){ if(bukket[l/k]==0)res++; bukket_count[l/k]++; } count[l]+=val; if(count[l]==0){ if(bukket[l/k]==0)res--; bukket_count[l/k]--; } } for (; l < r && r % k;){ r--; if(count[r]==0){ if(bukket[r/k]==0)res++; bukket_count[r/k]++; } count[r]+=val; if(count[r]==0){ if(bukket[r/k]==0)res--; bukket_count[r/k]--; } } for (; l < r;){ int b=(r-=k)/k; if(bukket[b]==0){ res+=k-bukket_count[b]; } bukket[b]+=val; if(bukket[b]==0){ res+=-k+bukket_count[b]; } } }; vector>>event(n+1); lint ans=0; for(int i=0;i