#include "bits/stdc++.h" #include #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair plint; typedef pair pld; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template auto add = [](T a, T b) -> T { return a + b; }; template auto f_max = [](T a, T b) -> T { return max(a, b); }; template auto f_min = [](T a, T b) -> T { return min(a, b); }; template using V = vector; using Vl = V; using VVl = V; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template T div_floor(T a, T b) { if (b < 0) a *= -1, b *= -1; return a >= 0 ? a / b : (a + 1) / b - 1; } template T div_ceil(T a, T b) { if (b < 0) a *= -1, b *= -1; return a > 0 ? (a - 1) / b + 1 : a / b; } template struct rec { F f; rec(F&& f_) : f(std::forward(f_)) {} template auto operator()(Args &&... args) const { return f(*this, std::forward(args)...); } }; lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); } lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); } bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18; lint dx[8] = { -1, 0, 1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endl; return flag; } struct Edge { lint from, to, cost; Edge() { } Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V>; typedef pair tlint; typedef pair _pld; typedef pair qlint; typedef pair valstr; typedef pair pchar; template< typename Data, typename T > struct ReRooting { struct Node { int to, rev; Data data; }; using F1 = function< T(T, T) >; using F2 = function< T(T, Data) >; vector< vector< Node > > g; vector< vector< T > > ldp, rdp; vector< int > lptr, rptr; const F1 f1; const F2 f2; const T ident; ReRooting(int n, const F1& f1, const F2& f2, const T& ident) : g(n), ldp(n), rdp(n), lptr(n), rptr(n), f1(f1), f2(f2), ident(ident) {} void add_edge(int u, int v, const Data& d) { g[u].push_back({ v, (int)g[v].size(), d }); g[v].push_back({ u, (int)g[u].size() - 1, d }); } T dfs(int idx, int par) { while (lptr[idx] != par && lptr[idx] < g[idx].size()) { auto& e = g[idx][lptr[idx]]; ldp[idx][lptr[idx] + 1] = f1(ldp[idx][lptr[idx]], f2(dfs(e.to, e.rev), e.data)); ++lptr[idx]; } while (rptr[idx] != par && rptr[idx] >= 0) { auto& e = g[idx][rptr[idx]]; rdp[idx][rptr[idx]] = f1(rdp[idx][rptr[idx] + 1], f2(dfs(e.to, e.rev), e.data)); --rptr[idx]; } if (par < 0) return rdp[idx][0]; return f1(ldp[idx][par], rdp[idx][par + 1]); } vector< T > solve() { for (int i = 0; i < g.size(); i++) { ldp[i].assign(g[i].size() + 1, 0); rdp[i].assign(g[i].size() + 1, 0); lptr[i] = 0; rptr[i] = (int)g[i].size() - 1; } vector< T > ret; for (int i = 0; i < g.size(); i++) { ret.push_back(dfs(i, -1)); } return ret; } }; int main() { lint N, K; cin >> N >> K; VVl to(N); REP(i, N - 1) { lint u, v; cin >> u >> v; u--; v--; to[u].push_back(v); to[v].push_back(u); } Vl arr(K); cin >> arr; Vl ined(N); REP(i, K) { arr[i]--; ined[arr[i]] = 1; } lint cnt = 0; V edges; map fx; { auto dfs = [&](auto&& dfs, lint curr, lint prv) -> lint { lint res = ined[curr]; for (lint nxt : to[curr]) { if (nxt == prv) continue; res |= dfs(dfs, nxt, curr); } if (res && prv != -1) { edges.push_back({ curr, prv }); edges.push_back({ prv, curr }); } return ined[curr] = res; }; dfs(dfs, arr[0], -1); set st; REP(i, N) { if (ined[i]) { cnt++; st.insert(i); } } for (lint v : st) fx[v] = SZ(fx); REP(i, SZ(edges)) edges[i] = { fx[edges[i].first], fx[edges[i].second] }; } ReRooting dp(cnt, f_max, add, 0); set _st; for (plint v : edges) { if (_st.count({ v.second, v.first })) continue; dp.add_edge(v.first, v.second, 1); _st.insert(v); } auto res = dp.solve(); Vl ans(N, INF); REP(i, N) { if (ined[i] == 0) continue; ans[i] = SZ(edges) - res[fx[i]]; auto dfs = [&](auto&& dfs, lint curr, lint prv, lint depth) -> void { for (lint nxt : to[curr]) { if (nxt == prv) continue; dfs(dfs, nxt, curr, depth + 1); } ans[curr] = ans[i] + depth; }; for (lint nxt : to[i]) { if (ined[nxt]) continue; dfs(dfs, nxt, i, 1); } } REP(i, N) { cout << ans[i] << endk; } }